## Integral

## Multiple Integral

## Double Integral Over Nonrectangular Region

Observation: let R be closed region in the (x, y)- plane. If f is a function of two variables that is define on the region R, then the double integrals on R is written by

$$\lim_{\substack{n \to \infty \\ \Delta A_r \to 0}} \sum_{r=1}^{n} f(x_r, y_r) \Delta A_r = \iint_{\mathbb{R}} f(x, y) \ dA$$



اذا كانت المنحنيات بهذه الصيغة يؤخذ المقطع شاقولي كانت المنحنيات بهذه الصيغة يؤخذ المقطع شاقولي

$$\iint\limits_{\mathbb{R}} f(x,y) \ dA = \int\limits_{a}^{b} \int\limits_{y_{1}}^{y_{2}} f(x,y) \ dy \, dx$$



اما اذا كانت المنحنيات بالشكل التالي يؤخذ المقطع افقيا

$$\iint\limits_{\mathbb{R}} f(x,y) \ dA = \int\limits_{c}^{d} \int\limits_{x_{1}}^{x_{2}} f(x,y) \, dx dy$$



Ex. (1): Evaluate 
$$\int_{0}^{3} \int_{1}^{2} (1 + 8xy) dy dx$$



- i) sketch: since  $dxdy \Rightarrow vertical$ y=1, y=2
- ii)  $\int_{0}^{3} \int_{1}^{2} (1 + 8xy) dy dx = \int_{0}^{3} (y + 8x \frac{y^{2}}{2}) \Big|_{1}^{2} dx$   $= \int_{0}^{3} \{1 + 12x\} dx$   $= (x + 12 \frac{x^{2}}{2}) \Big|_{0}^{3}$  = (3 + 6(9)) (0) = (3 + 54) = 57

Ex. (2): Evaluate  $\iint (2x-y^2)dA$  over the triangular R enclosed by

$$y=1-x$$
 ,  $y=1+x$  ,  $y=3$ 

i) sketch:

if 
$$y=1-x$$
 ,  $y=1+x$   
if  $x=0 \Rightarrow y=1$  , if  $x=0 \Rightarrow y=1$   
if  $y=0 \Rightarrow x=1$  , if  $y=0 \Rightarrow x=-1$   
 $\Rightarrow (0,1) \& (1,0)$  ,  $\Rightarrow (0,1) \& (-1,0)$ 



$$\left| \iint\limits_{R} (2x - y^2) dA = \int\limits_{1-y}^{3} \int\limits_{1-y}^{y-1} (2x - y^2) dx dy \right| = \int\limits_{1}^{3} (x^2 - y^2 x) \Big|_{1-y}^{y-1} dy = \left| \mathbf{18} - \frac{\mathbf{244}}{\mathbf{6}} \right|$$

**Ex. (3):** Evaluate 
$$\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{x^{2}} dx dy$$

Reverse the order of integration

Since dxdy horizontal

$$x = \frac{y}{2} \quad \Rightarrow \quad y = 2x$$

$$x = 1$$

for y from  $0 \rightarrow 2$ 

$$\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{x^{2}} dx dy = \int_{0}^{1} \int_{0}^{2x} e^{x^{2}} dy dx = \int_{0}^{1} e^{x^{2}} y \Big|_{0}^{2x} dx$$
$$= e - 1$$



# **Ex. (4):** Evaluate $\int_{0}^{\infty} \int_{y}^{\sin x} dx dy$

From left x = y

From right  $x = \pi$ 

value of y, from  $0 \Rightarrow x$ 

reverse the order



$$\Rightarrow \int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} dx dy = \int_{0}^{\pi} \int_{0}^{x} \frac{\sin x}{x} dy dx$$

$$= \int_{0}^{\pi} \frac{\sin x}{x} \cdot y \Big|_{0}^{x} dx = \int_{0}^{\pi} \frac{\sin x}{x} \cdot x dx$$

$$= 2$$

Ex. (5):

$$\int_{0}^{2} \int_{x}^{2} 2y^{2} \sin xy \, dy dx = \int_{0}^{2} \int_{0}^{y} 2y^{2} \sin xy \, dx dy$$

$$= \int_{0}^{2} \left[ -2y \cos xy \right]_{0}^{y} dy = \int_{0}^{2} \left[ -2y \cos y^{2} + 2y \right] dy$$

$$= \left[ -\sin y^{2} + y^{2} \right]_{0}^{2} = \mathbf{4} - \sin \mathbf{4}$$

**Ex. (6):** Write an equivalent double of integration reversed  $\int_{-1}^{0} \int_{-x}^{x+2} (x^2 + y^2) dy dx$ 





Ex. (7): Draw the region bounded by  $y=e^x$ ,  $y=\sin x$ ,  $x=\pi$ ,  $x=-\pi$  and evaluate its area.

$$A = \int_{-\pi \sin x}^{\pi} \int_{-\pi \sin x}^{e^{x}} dy dx$$
$$= \int_{-\pi}^{\pi} y \Big|_{\sin x}^{e^{x}}$$

## قوانين و ملاحظات مهمة مع بعض الامثلة حول التكامل

## Multiple Integrals

## Double Integral over Rectangular Region

If f(x,y) is continuous throughout the rectangular region  $R: a \le x \le b$ ,  $c \le y \le d$ , then

$$\iint\limits_R f(x,y)dA = \iint\limits_{c}^{d} \int\limits_{a}^{b} f(x,y)dxdy = \iint\limits_{a}^{b} \int\limits_{c}^{d} f(x,y)dydx$$

## Double Integral over Nonrectangular Region

Let f(x, y) be continuous on a region R.

1. If R is defined by  $a \le x \le b$ ,  $g_1(x) \le y \le g_2(x)$ , with  $g_1$  and  $g_2$  are continuous on [a,b], then

$$\iint\limits_R f(x,y)dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y)dydx$$

2. If R is defined by  $c \le y \le d$ ,  $h_1(y) \le x \le h_2(y)$ , with  $h_1$  and  $h_2$  are continuous on [c,d], then

$$\iint\limits_R f(x,y)dA = \int\limits_c^d \int\limits_{h_1(y)}^{h_2(y)} f(x,y)dxdy$$

## Finding Limits of Integration

To evaluate  $\iint_R f(x, y) dA$  and if we integrate first with respect to y and then with respect to x, do the following:

 Sketch. Sketch the region of integration and label the bounding curves.



2) Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where L enters and leaves. These are the y-limits of integration and are usually functions of x.



3) Find the x-limits of integration. Choose x-limits that include all the vertical lines through R. The integral becomes



$$\iint_{R} f(x, y) dA = \int_{0}^{1} \int_{1-x}^{\sqrt{1-x^{2}}} f(x, y) dy dx$$

To evaluate the same double integral as an iterated integral with the order of integration reversed, use horizontal lines instead of vertical lines in steps 2 and 3. the integral is



$$\iint_{R} f(x, y) dA = \int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) dx dy$$

#### Example

Sketch the region of integration for the integral

$$\int_{0}^{2} \int_{x^{2}}^{2x} (4x+2) dy dx$$

and write the equivalent integral with the order of integration reversed.

## **Solution**





To find limits for integrating in the reverse order, we imagine a horizontal line passing from left to right through the region. It enters at x = y/2 and leaves at  $x = \sqrt{y}$ . To include all such lines y must be from 0 to 4.

So,

$$\int_{0}^{2} \int_{x^{2}}^{2x} (4x+2) dy dx = \int_{0}^{4} \int_{y/2}^{\sqrt{y}} (4x+2) dx dy$$

### **Example**

Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

$$z = f(x, y) = 3 - x - y$$

#### Solution

$$V = \int_{0}^{1} \int_{0}^{x} (3 - x - y) dy dx = \int_{0}^{1} \left( 3y - xy - \frac{y^{2}}{2} \right) \Big|_{y=0}^{y=x} dx$$
$$= \int_{0}^{1} \left( 3x - \frac{3x^{2}}{2} \right) dx = \left( \frac{3x^{2}}{2} - \frac{x^{3}}{2} \right) \Big|_{x=0}^{x=1} = 1$$

When the order of the integration is reversed, the integral of the volume is

$$V = \int_{0}^{1} \int_{y}^{1} (3 - x - y) dx dy = \int_{0}^{1} \left( 3x - \frac{x^{2}}{2} - xy \right) \Big|_{x=y}^{x=1} dy$$

$$= \int_{0}^{1} \left( 3 - \frac{1}{2} - y - 3y + \frac{y^{2}}{2} + y^{2} \right) dy = \int_{0}^{1} \left( \frac{5}{2} - 4y + \frac{3}{2} y^{2} \right) dy$$

$$= \left( \frac{5}{2} y - 2y^{2} + \frac{1}{2} y^{3} \right) \Big|_{y=0}^{y=1} = 1$$

#### **Example**

Find the area of the region R enclosed by the parabola  $y = x^2$  and the line y = x + 2.

#### Solution

$$A = \int_{-1}^{2} \int_{x^{2}}^{x+2} dy dx = \int_{-1}^{2} y \Big|_{x^{2}}^{x+2} dx = \int_{-1}^{2} (x+2-x^{2}) dx$$
$$= \left(\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3}\right) \Big|_{-1}^{2} = \frac{9}{2}$$

On the other hand, reversing the order of integration results in dividing the region into two parts as follows:

$$A = \iint_{R_1} A_1 dx dy + \iint_{R_2} A_2 dx dy$$
$$= \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx dy + \int_1^4 \int_{y-2}^{y} dx dy$$

## **Homework**

Calculate  $\iint_R \frac{\sin(x)}{x} dA$  where R is the triangle in the xy-plane bounded by the x-axis, the line y=x, and the line x=1.

Ans.: 0.46

Find the area of the region R bounded by y=x and  $y=x^2$  in the first quadrant.

Ans.:  $\frac{1}{6}$