
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

■  Process Concept
■  Process Scheduling
■  Operations on Processes
■  Interprocess Communication
■  Examples of IPC Systems
■  Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

■  To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

■  To describe the various features of processes, including
scheduling, creation and termination, and communication

■  To explore interprocess communication using shared memory
and message passing

■  To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

■  An operating system executes a variety of programs:
●  Batch system – jobs
●  Time-shared systems – user programs or tasks

■  Textbook uses the terms job and process almost interchangeably
■  Process – a program in execution; process execution must

progress in sequential fashion
■  Multiple parts

●  The program code, also called text section
●  Current activity including program counter, processor

registers
●  Stack containing temporary data

! Function parameters, return addresses, local variables
●  Data section containing global variables
●  Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

■  Program is passive entity stored on disk (executable file),
process is active
●  Program becomes process when executable file loaded into

memory
■  Execution of program started via GUI mouse clicks, command

line entry of its name, etc
■  One program can be several processes

●  Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

■  As a process executes, it changes state
●  new: The process is being created
●  running: Instructions are being executed
●  waiting: The process is waiting for some event to occur
●  ready: The process is waiting to be assigned to a processor
●  terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)
■  Process state – running, waiting, etc
■  Program counter – location of

instruction to next execute
■  CPU registers – contents of all process-

centric registers
■  CPU scheduling information- priorities,

scheduling queue pointers
■  Memory-management information –

memory allocated to the process
■  Accounting information – CPU used,

clock time elapsed since start, time
limits

■  I/O status information – I/O devices
allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

■  So far, process has a single thread of execution
■  Consider having multiple program counters per process

●  Multiple locations can execute at once
! Multiple threads of control -> threads

■  Must then have storage for thread details, multiple program
counters in PCB

■  See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

■  Maximize CPU use, quickly switch processes onto CPU for time
sharing

■  Process scheduler selects among available processes for
next execution on CPU

■  Maintains scheduling queues of processes
●  Job queue – set of all processes in the system
●  Ready queue – set of all processes residing in main

memory, ready and waiting to execute
●  Device queues – set of processes waiting for an I/O device
●  Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

■  Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

■  Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU
●  Sometimes the only scheduler in a system
●  Short-term scheduler is invoked frequently (milliseconds) ⇒ (must be

fast)
■  Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue
●  Long-term scheduler is invoked infrequently (seconds, minutes) ⇒ (may

be slow)
●  The long-term scheduler controls the degree of multiprogramming

■  Processes can be described as either:
●  I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
●  CPU-bound process – spends more time doing computations; few very

long CPU bursts
■  Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

■  Medium-term scheduler can be added if degree of multiple
programming needs to decrease
●  Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

■  Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

■  Due to screen real estate, user interface limits iOS provides for a
●  Single foreground process- controlled via user interface
●  Multiple background processes– in memory, running, but not

on the display, and with limits
●  Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback
■  Android runs foreground and background, with fewer limits

●  Background process uses a service to perform tasks
●  Service can keep running even if background process is

suspended
●  Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

■  When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

■  Context of a process represented in the PCB
■  Context-switch time is overhead; the system does no useful

work while switching
●  The more complex the OS and the PCB è the longer the

context switch
■  Time dependent on hardware support

●  Some hardware provides multiple sets of registers per CPU
è multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

■  System must provide mechanisms for:
●  process creation,
●  process termination,
●  and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

■  Parent process create children processes, which, in turn
create other processes, forming a tree of processes

■  Generally, process identified and managed via a process
identifier (pid)

■  Resource sharing options
●  Parent and children share all resources
●  Children share subset of parent’s resources
●  Parent and child share no resources

■  Execution options
●  Parent and children execute concurrently
●  Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

■  Address space
●  Child duplicate of parent
●  Child has a program loaded into it

■  UNIX examples
●  fork() system call creates new process
●  exec() system call used after a fork() to replace the

process’ memory space with a new program

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Creating a Separate Process via Windows API

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

■  Process executes last statement and then asks the operating
system to delete it using the exit() system call.
●  Returns status data from child to parent (via wait())
●  Process’ resources are deallocated by operating system

■  Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:
●  Child has exceeded allocated resources
●  Task assigned to child is no longer required
●  The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

■  Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.
●  cascading termination. All children, grandchildren, etc. are

terminated.
●  The termination is initiated by the operating system.

■  The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

 pid = wait(&status);

■  If no parent waiting (did not invoke wait()) process is a zombie
■  If parent terminated without invoking wait , process is an orphan

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprocess Architecture – Chrome Browser

■  Many web browsers ran as single process (some still do)
●  If one web site causes trouble, entire browser can hang or crash

■  Google Chrome Browser is multiprocess with 3 different types of
processes:
●  Browser process manages user interface, disk and network I/O
●  Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
! Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
●  Plug-in process for each type of plug-in

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

■  Processes within a system may be independent or cooperating
■  Cooperating process can affect or be affected by other processes,

including sharing data
■  Reasons for cooperating processes:

●  Information sharing
●  Computation speedup
●  Modularity
●  Convenience

■  Cooperating processes need interprocess communication (IPC)
■  Two models of IPC

●  Shared memory
●  Message passing

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

(a) Message passing. (b) shared memory.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cooperating Processes

■  Independent process cannot affect or be affected by the execution
of another process

■  Cooperating process can affect or be affected by the execution of
another process

■  Advantages of process cooperation
●  Information sharing
●  Computation speed-up
●  Modularity
●  Convenience

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

■  Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process
●  unbounded-buffer places no practical limit on the size

of the buffer
●  bounded-buffer assumes that there is a fixed buffer

size

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

■  Shared data
#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

■  Solution is correct, but can only use BUFFER_SIZE-1 elements

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

■  An area of memory shared among the processes that wish
to communicate

■  The communication is under the control of the users
processes not the operating system.

■  Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

■  Synchronization is discussed in great details in Chapter 5.

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

■  Mechanism for processes to communicate and to synchronize
their actions

■  Message system – processes communicate with each other
without resorting to shared variables

■  IPC facility provides two operations:
●  send(message)
●  receive(message)

■  The message size is either fixed or variable

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

■  If processes P and Q wish to communicate, they need to:
●  Establish a communication link between them
●  Exchange messages via send/receive

■  Implementation issues:
●  How are links established?
●  Can a link be associated with more than two processes?
●  How many links can there be between every pair of

communicating processes?
●  What is the capacity of a link?
●  Is the size of a message that the link can accommodate fixed or

variable?
●  Is a link unidirectional or bi-directional?

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

■  Implementation of communication link
●  Physical:

! Shared memory
! Hardware bus
! Network

●  Logical:
!  Direct or indirect
!  Synchronous or asynchronous
!  Automatic or explicit buffering

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

■  Processes must name each other explicitly:
●  send (P, message) – send a message to process P
●  receive(Q, message) – receive a message from process Q

■  Properties of communication link
●  Links are established automatically
●  A link is associated with exactly one pair of communicating

processes
●  Between each pair there exists exactly one link
●  The link may be unidirectional, but is usually bi-directional

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

■  Messages are directed and received from mailboxes (also referred
to as ports)
●  Each mailbox has a unique id
●  Processes can communicate only if they share a mailbox

■  Properties of communication link
●  Link established only if processes share a common mailbox
●  A link may be associated with many processes
●  Each pair of processes may share several communication links
●  Link may be unidirectional or bi-directional

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

■  Operations
●  create a new mailbox (port)
●  send and receive messages through mailbox
●  destroy a mailbox

■  Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

■  Mailbox sharing
●  P1, P2, and P3 share mailbox A
●  P1, sends; P2 and P3 receive
●  Who gets the message?

■  Solutions
●  Allow a link to be associated with at most two processes
●  Allow only one process at a time to execute a receive

operation
●  Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization
■  Message passing may be either blocking or non-blocking
■  Blocking is considered synchronous

●  Blocking send -- the sender is blocked until the message is
received

●  Blocking receive -- the receiver is blocked until a message
is available

■  Non-blocking is considered asynchronous
●  Non-blocking send -- the sender sends the message and

continue
●  Non-blocking receive -- the receiver receives:

●  A valid message, or
●  Null message

■  Different combinations possible
●  If both send and receive are blocking, we have a rendezvous

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

■  Producer-consumer becomes trivial  

 message next_produced;

 while (true) {
 /* produce an item in next produced */

 send(next_produced);

 }

message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

■  Queue of messages attached to the link.
■  implemented in one of three ways

1. Zero capacity – no messages are queued on a link. 
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages 
Sender must wait if link full

3. Unbounded capacity – infinite length  
Sender never waits

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems - POSIX

■  POSIX Shared Memory
●  Process first creates shared memory segment 

shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

●  Also used to open an existing segment to share it
●  Set the size of the object

ftruncate(shm fd, 4096);

●  Now the process could write to the shared memory
 sprintf(shared memory, "Writing to shared
memory");

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Producer

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IPC POSIX Consumer

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems - Mach

■  Mach communication is message based
●  Even system calls are messages
●  Each task gets two mailboxes at creation- Kernel and Notify
●  Only three system calls needed for message transfer
 msg_send(), msg_receive(), msg_rpc()

●  Mailboxes needed for commuication, created via
 port_allocate()

●  Send and receive are flexible, for example four options if mailbox full:
! Wait indefinitely
! Wait at most n milliseconds
! Return immediately
! Temporarily cache a message

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of IPC Systems – Windows

■  Message-passing centric via advanced local procedure call
(LPC) facility
●  Only works between processes on the same system
●  Uses ports (like mailboxes) to establish and maintain

communication channels
●  Communication works as follows:

! The client opens a handle to the subsystem’s
connection port object.

! The client sends a connection request.
! The server creates two private communication ports

and returns the handle to one of them to the client.
! The client and server use the corresponding port handle

to send messages or callbacks and to listen for replies.

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Local Procedure Calls in Windows

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

■  Sockets
■  Remote Procedure Calls
■  Pipes
■  Remote Method Invocation (Java)

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

■  A socket is defined as an endpoint for communication

■  Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

■  The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

■  Communication consists between a pair of sockets

■  All ports below 1024 are well known, used for standard
services

■  Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets in Java

■  Three types of sockets
●  Connection-oriented

(TCP)
●  Connectionless (UDP)
●  MulticastSocket

class– data can be sent
to multiple recipients

■  Consider this “Date” server:

3.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Remote Procedure Calls

■  Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems
●  Again uses ports for service differentiation

■  Stubs – client-side proxy for the actual procedure on the
server

■  The client-side stub locates the server and marshalls the
parameters

■  The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

■  On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

3.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Remote Procedure Calls (Cont.)

■  Data representation handled via External Data
Representation (XDL) format to account for different
architectures
●  Big-endian and little-endian

■  Remote communication has more failure scenarios than local
●  Messages can be delivered exactly once rather than at

most once
■  OS typically provides a rendezvous (or matchmaker) service

to connect client and server

3.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Execution of RPC

3.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pipes

■  Acts as a conduit allowing two processes to communicate
■  Issues:

●  Is communication unidirectional or bidirectional?
●  In the case of two-way communication, is it half or full-

duplex?
●  Must there exist a relationship (i.e., parent-child) between

the communicating processes?
●  Can the pipes be used over a network?

■  Ordinary pipes – cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.

■  Named pipes – can be accessed without a parent-child
relationship.

3.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ordinary Pipes

■  Ordinary Pipes allow communication in standard producer-consumer
style

■  Producer writes to one end (the write-end of the pipe)
■  Consumer reads from the other end (the read-end of the pipe)
■  Ordinary pipes are therefore unidirectional
■  Require parent-child relationship between communicating processes

■  Windows calls these anonymous pipes
■  See Unix and Windows code samples in textbook

3.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Named Pipes

■  Named Pipes are more powerful than ordinary pipes
■  Communication is bidirectional
■  No parent-child relationship is necessary between the

communicating processes
■  Several processes can use the named pipe for communication
■  Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

