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Lecture Outline

* Analysis of DT-LTI System

* Difference Equations

* Recursive Systems

* Non-recursive Systems

* Describing Digital Signals with Impluse Function

* Describing Digital LTI Responses
1) Impulse Response

2) Step Response
* Discrete-Time Convolution
* Discrete-Time Circular Convolution
* Discrete-Time Correlation
 Deconvolution
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Analysis of DT-LTI system

There are two basic methods for
analyzing the behavior or response of a

Linear system to a given input signal.

1.

2.

Method based on direct solution of input-
output equation for the system.

Decomposition of the input signal into a sum

of elementary signals (usually samples)

— Elementary signals are selected so that the response of
the system to each signal component is easily
determined.
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Difference Equations

B Difference eqs can be used to describe how a
linear, time-invariant, causal digital system
WOrkKs.

B |f present i/p & o/p X[n] & y[n]
then the preceding I/ps & o/ps
X[n-1], Xx[n-2]....& y[n-1], y[n-2]...s0 on.
B Using these notations, the most general
expression of the diff: eq: Is
apy[n]+a,y[n-1]+ay[n-2]+...+agy[n-N
= boX[n]+b,4X[Nn-1]+b,X[N-2]+...+by, X[n-M]

Weightings
or
Coefficients

Dr. Ali J. Abboud 4
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Difference Equations

B The equation can be presented more
compactly as

Z a,y[n—k]= Z b.x[n—k]—— Eq : (1)

B If we make a;=1, theﬁqmu_manﬁew

as Al M Past inputs
=Y atn-K+ Shotn-H—E:

Past outputs

B The eq:(2) form shows how each new o/p from the
system can be calculated using past o/ps, present i/ps
& past i/ps.
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Recursive Systems

B When a digital system relies on both i/ps
and past o/ps, it is referred to as a
Recursive system.

B Eq: (2) is the equation for Recursive
systems.
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Non-Recursive Systems

B\When the digital system relies only on I/ps

( present & past ), and not on past o/ps, it Is
referred to as a non recursive system.

B The following eq: gives the general form for this
kind of filter.

yn]= bxln—k]
k=0
Y[n]= box[n]+bx[n-1]+b,x[n-2]+...+b}, X[n-M]
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Non-Recursive Systems

I Example 1. A system has the
difference eq: y[n]= 0.5y[n-
1]+x[n]

1. ldentify all coefficients a, & b,.
s this a Recursive or Non-
recursive diff. eq..

3. |If the i/p x[n] is as given in
figure below, find the first 12

samples of the o/p, starting

Solution: with n=0.

1) Writing the o/ps on the left & i/ps on the right, we get
y[n]-0.5y[n- 1]=x[n].
So, a,=1, a,=-0.5, b~1.
2) Since the o/p y[n] depends on a past o/p y[n-1], the digital
system is recursive.
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Non-Recursive Systems

3)  Y[0]=0.5y{-1]+x[0] = 0.5(0.0)+1.0 = 1.0

(since the sys: is considered causal, the o/p cant begin until
’51h]e i/p first becomes nonzero, in this case at n=0. Hence y[-

Y[1]=0.5y{0]+x[1] = 0.5(1.0)+1.0 = 1.5
Y[2]=0.5y{1]+x[2] = 0.5(1.5)+1.0 = 1.75
Y[3]=0.5y[2]+x[3] = 0.5(1.75)+1.0 = 1.875
Y[4]=0.5y[3]+x[4] = 0.5(1.875)+1.0 = 1.9375
Y[5]=0.5y[4]+x[5] = 0.5(1.9375)+1.0 = 1.9688
Y[6]=0.5y[5]+x[6] = 0.5(1.9688)+1.0 = 1.9844
Y[7]=0.5y[6]+x[7] = 0.5(1.9844)+1.0 = 1.9922
Y[8]=0.5y[7]+x[8] = 0.5(1.9922)+1.0 = 1.9961
Y[9]=0.5y{8]+x[9] = 0.5(1.9961)+1.0 = 1.9980
Y[10]=0.5y[9]+x[10] = 0.5(1.9980)+1.0 = 1.9990
Y[11]=0.5y[10]+x[11] = 0.5(1.9990)+1.0 = 1.9995
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Non-Recursive Systems

3) Because of the u[n] factor in the o/p, the values of
the i/p before n=0 are zero.
n -1 0 1 2 3 4 5
X[n] | 0.0 0.0 0643 |0985 |0866 |0.342 0.342
Y[n] | 0.0 0.0 0.321 |0300 |0138 |-0089 |-0274
n 6 T 8 9 10 11 12
X[n] | -0.866 | -0985 |-0643 |00 0.643 0.985 0866
Y[n] |-0.330 |-0.233 |-0.026 | 0.193 |0.321 | 0.300 0.138
n 13 14 15 16 17 18 19
X[n] | 0.342 | -0342 | -0.866 | -0985 |-0643 0.0 0.643
Y[n] | -0.089 |-0274 | -0330 |-0233 |[-0.026 0.193 0.321

Dr. Ali J. Abboud
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Superposition in Diff: eq:

B [n some instances, several i/ps may be
applied to a system at the same time.

B \When this happens, the system response
to the sum of these inputs through
superposition.

B Fortunately, when the sys: is linear,
multiple inputs can be handled easily.
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Superposition in Diff: eq:

B Tutorial 1: A system is described by the
difference equation

Y[Nn]=x[n]+0.5x[n-1]
Two I/ps are x,[n]=2u[n]
X,[n]=sin (n11/7)u[n]
Find and plot the first 20 samples of the

o/p resulting from the combined effect of
the 2i/ps.
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Difference eq: Diagrams

Non-recursive Diff:
eqs: diagram —| DELAY |——

The basic elements
used In designing

Delay element

non-recursive diff:
. -4
eq: diagrams are
+ Delay element Coefficient multiplier

+ Coefficient multiplier

+  Summer ﬁ_

Summer

Dr. Ali J. Abboud 13 Dept. of Computer and Software Engineering



Difference eq: Diagrams

B A general non-

recursive diff: eq: e | D () g

described previously Delay
can be presented

schematically as 4,®

below.

L

Delay

b

Non-recursive Difference
equation Diagram
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Difference eq: Diagrams

B Exampled: Draw a

diagram for the diff:  xqn] B Q y[n]
eq |

y[n]=0.5x[n]+0.4x|[n- Delay

1]-0.2x[n-2]

Solution: 4’@
De;lray

i
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Difference eq: Diagrams

B Tutorial 2: Write the

diff: eq: that - | -4

corresponds to the Deray
diagram given below l
Delay
4_@
Y
Delay

— >
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Difference eq: Diagrams

B Higher order system can be broken down
Into second order chunks, and cascaded
together.

B \When the order of the system is odd, a
single first order section is added to the
group of 2" order section.

B The following example illustrates this
point.
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Difference eq: Diagrams

B Example4: Find the difference eq: of the
following cascaded diagram

x‘l[“] __..ffh‘*?.‘ll-n]:x;[n] r_‘,ﬁ[“]:xﬁ["] _ ".I":![“]
3

Li y
Delay Delay

Solution:
The first stage produces the diff: eq:Y ,[n]=x,[n]-0.1x,[n-1]+0.2x,[n-2]
The 2nd stage produces the diff: eq:Y,[n]=x,[n]+0.3x,[n-1]+0.1x,[n-2]
The 3rd stage produces the diff: eq:Y ;[n]=x,[n]-0.4x;[n-1]

The final diff: eq: will become y,[n]=x,[n]-0.2x,[Nn-1]+0.19x,[n-2]-
0.058x,[n-3]-0.008x,[n-5]
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2. Recursive difference

equations X[n] ,@ _@ yin]

1. Direct form 1 ¥
Realization Delay Delay

B In this form, the diagram

of recursive diff. eq: can | b {I_
be made by using the | 1 1 |

previous diagram : ; i

elements. Etm : : Delay
B The general recursive

diff: eq: described :Eﬁ/\ f’{l/u]

previously cab be

depicted as, Recursive Direct Form 1 Realization

Difference equation Diagram

Dr. Ali J. Abboud 19 Dept. of Computer and Software Engineering



Difference eq: Diagrams

B Exampled: Draw a direct form1

realization diff: eq: to describe A = ,@ {["]
.

the recursive system.
y[n]+0.5y[n-2]=0.8x[n]+0.1x[n-
1]-0.3x[n-2] Delay Delay

Solution: Rearranging the eq:
we get

y[n]=-0.9y[n- A’EH
2]+0.8x[n]+0.1x[n-1]-0.3x[n-2]
Delay Delay

g

Dept. of Computer and Software Engineering
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Difference eq: Diagrams

2. Direct for 2 Realization

» The Form 1 realization is not the most efficient to
Implement a recursive diff: eq:

» A much efficient way to implement recursive diff: eq:
is direct form 2 realization.

» This realization requires the use of an intermediate
signhal w[n] that records salient information about the
history of the system in place of past i/ps and past
o/ps.

» The two egs: that define DF2 realization are
wn]= x[n]- Z] a,wiln — k]

yv[in] = Z B.wiln — k]
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Difference Equation

A discrete-time signal s (n) is delayed by n, samples when we write s (n — ng), with ng > 0.
Choosing ng to be negative advances the signal along the integers. As opposed to analog
delays (pg ?77). discrete-time delays can only be integer valued. In the frequency domain,
delaying a signal corresponds to a linear phase shift of the signal’s discrete-time Fourier
transform: s (n — ng) « e~ (27/n0) G (¢i27f),

Linear discrete-time systems have the superposition property.
Superposition
S(ayz) (n) + azz2 (n)) = a1 S () (n)) + a2S (z2 (n))

A discrete-time system is called shift-invariant (analogous to time-invariant analog sys-
tems (pg 77)) if delaying the input delays the corresponding output.

Shift-Invariant

IfS(z(n))=y(n),ThenS (z(n—ng)) =y (n— ng)
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Difference Equation

We use the term shift-invariant to emphasize that delays can only have integer values in
discrete-time, while in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are hoth linear and shift-invariant. It waill
he these that allow us the full power of frequency-domain analysis and implementations.
Because we have no physical constraints in "constructing” such systems, we need only a
mathematical specification. In analog systems, the differential equation specifies the input-
output relationship in the time-domain. The corresponding discrete-time specification 1s
the difference equation .

The Difference Equation

yn)=ayn-1)+..+ay(n—p)+bx(n)+bhz(n-1)+ ..+ bz(n—gq)

Here, the output signal y(n) 1s related to its past values y(n—1), [ ={1,...,p}, and to the
current and past values of the input signal = (n). The system's characteristics are determined
by the choices for the mumber of coefficients p and g and the coefficients’ values {ay, ..., a,}

and {bo, by, .... by ).
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Analysis of DT-LTI system

B The second method for analyzing the behavior of LT]
system to a given I/p signal is first to decompose or
resolve the input signal into a sum of elementary signals.

B The elementary signals are selected so that the
response of the system to each signal component is
easlily determined.

B Then using the linearity property of the sys, the
responses of the system to the elementary signals are
added to obtain the total response of the sys to the given
/p signal.

B The elementary signal we choose to analyze LTI system
IS impulse signal.
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Analysis of DT-LTI system

Suppose we have an arbitrary signal x[n] that we wish to resolve into a
sum of unit sample sequence.

Consider the product of a signal x[n] and the impulse sequence 8[n],
written as x[n]d[n]
Since d[n]=1 only at n=0,s0 we can write
x[n]o[n] = x[0]o[n]
If we were to repeat the multiplication of x[n] with 6[n-k], where & [n-k]

is time shifted impulse sequence, the result will be a sequence that is
zero everywhere except at n=k,

x[n]d[n-k] = x[k]o[n-k]
This property allows us to express x[n] as the following weighted sum
of time shifted impulses:

x[n] = ... + x[-2]0[n+2]+ x[-1]0[n+1]+ :-:[D]ﬁ[n] + x[1]8[n-1] + x[2]8[n-2]+...
Or in concise form as:
x[n]= zx [k]5|n k]«ﬁ\\

k=—w

Right hand side gives us the resolution o
any arbitrary signal ®[n] into weighted
sum of shifted unit sample sequences.
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Analysis of DT-LTI system

The second method for analyzing the behavior of LTI
system to a given i/p signal is first to decompose or
resolve the input signal into a sum of elementary signals.

The elementary signals are selected so that the
response of the system to each signal component is
easily determined.

Then using the linearity property of the sys, the
responses of the system to the elementary signals are
added to obtain the total response of the sys to the given
I/p signal.

The elementary signal we choose to analyze LTI system
IS impulse signal.
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Resolution of DT signals into Impulses

Suppose we have an arbitrary signal x[n] that we wish to resolve into a
sum of unit sample sequence.

Consider the product of a signal x[n] and the impulse sequence d[n],
written as x[n]d[n]
Since d[n]=1 only at n=0,s0 we can write
x[n]d[n] = x[0]0[n]
If we were to repeat the multiplication of x[n] with d[n-k], where & [n-k]

is time shifted impulse sequence, the result will be a sequence that is
zero everywhere except at n=k,

x[n]o[n-k] = x[k]o[n-k]
This property allows us to express x[n] as the following weighted sum
of time shifted impulses:

x[n] = ... + x[-2]8[n+2]+ x[-1]8[n+1]+ x[D]G[n] + x[1]8[n-1] + x[2]8[n-2]+...
Or in concise form as:
x[n]= Z [ k16[n—k|—

k=—w

Right hand side gives us the resolution o
any arbitrary signal x[n] into weighted
sum of shifted unit sample sequences.
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Impulse Response of LTI System

The impulse response 15 exactly what 1ts name mphes - the response of an LTT system,
such as a filter, when the system’s mput 1s the umf mpulse (or umit sample). A system
can be completed describe by its impulse response due to the 1dea mentioned above that
all sigmals can be represented by a superposition of signals, An mpulse response gives an
equivalent description of a system as a transter fucntion, since they are Laplace Transforms
of each other

NOTATION:  Most texts use d(t) and d[n| to denote the contimuous-time and
discrte-time mpulse response, rﬂap{:r;tlw,l}-.
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Impulse Response of LTI System

The response of a system to the unit input 0/n] is called the Impulse Response,
normally written as hn|

[n the case of Linear-Time-[nvartant (LTT) systems it conpletely character-

1z¢s their behavior. This 1s because every mput sequence can be described as
2 Imear combmation of delayed copies of the unit sequence, and using lnear-

ity and time-Invariance, the reponse can be bult as a superposition of delayed
mpulse reponses. Such superposition can be wntten as the sum:
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Impulse Response of LTI System

Z z[klh[n — k] = Z z[n — klh[k] = x[n] * h[n]
k=—oc k=—oc
called convelution of the input and the impulse response.
The convolution has interesting properties, such as commutativity (r+y = y*
r), associativity ((x*y)*z = rx(y+*z)) and distributivity (z*(y+z) = rxy+r*z).
Furthermore, properties of LTI systems are simply described by h[n]:
e Stability: A system is stable it and only it the impulse response is abso-
lutely summable (3.7 |z[n]| < oc)
e Causality: A system is causal if and only if its impluse response is a causal
signal.

Finally, simple interconnection schemes of systems result in simple compo-
sition of the impulse response:

e Cascade connection: The impulse response is the convolution of the re-
sponses (ly, = hq1 * ha). Important consequence is the fact that order is
not important in cascade connections. Stability, passivity and losslessness
are preserved.

e Parallel connection: The response i1s the sume of the responses (hiy.s =
hi + ho). Stability is preserved.
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Impulse Response of LTI System

The unit impulse was described above as:

S[n] = 0, n # 0

d[n] = 1, n =0
This i1s also sometimes known as the Kronecker delta function
This can be tabulated

n | -2 -1 0 1 2 3 4 5 6
Slnj | o 0 0 1 0 0 0 0 0 0 0
S[n-2] 0 0 0 0 0 1 0 0 0 0 0
5(n-2]
|
| W —_—

1-2 012 3 4

LA

n ———==

Shifted impulse sequence, &[n — 2]
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Impulse Response of LTI System

The third row of table 1 gives the values of the shifted impulse 6[n — 2]

MNow consider the following signal:
x[n] =28[n | + 48|n — 1] + 68[n — 2] + 48|n — 3] + 28|n — 4]

Table 2 shows the individual sequences and their sum.

n -2 -1 0 1 2 3 4 5 (3

28[n] 0 0 0 2 0 0 0 0 0 0 0
45(n-1] 0 0 0 0 4 0 0 0 0 0 0
65[n-2] 0 0 0 0 (i} 0 0 0 0 0
45n-3] 0 0 0 0 0 0 4 0 0 0 0
28[(n-4] 0 0 0 0 0 0 0 2 0 0 0
xfinj 0 0 0 2 el [ el 2 0 0 0
Table 2

Hence any sequence can be represented by the equation:
xn] =3 Ak]d[n— k]
k

=+ x[-1]8[n + 1] + x[0]&n] + x[1]8[n - 1] + x[2]8[n - 2] +.......

When the input to an FIR filter is a unit impulse sequence, x[nf = 8fn/. the output is known as the unit impulse
response, which is normally donated as hfn].
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Suppose that a sienal x[n| 1s s1ven as mmput to a linear
-

system

First, let us look at z|n|d[n — k| as a function of

n € &, where k 1s fixed.

k] tn=k

rn|dn — k| = ' _—

Dr. Ali J. Abboud 33 Dept. of Computer and Software Engineering



Impulse Response of LTI System

This holds for any fixed £,

Z rlkloln — k| = z|n

k=—m0
This 15 the sifting property.
The system 1s linear. It the response of the system to
dln — k| (where k is fixed and n € Z) 1s hy[n|, then
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Impulse Response of LTI System

the output of the system for x[n| is given by

y|n] = Z x|k|hy[n]

k=—nc

If in addition, the system is time-invariant(LTT), then
if we let hg[n| = h[n| to be the response to d[n|, then
hi.[n| = hin — k], so we have

o0

y[n] = Z r|klh|n — k

k=—oo
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Summary

hin| is the response of an LTI system to d|n| and is

called the impulse response of an LTT system. T

Impulse Response of LTI System

1€11

yln| = ,__ . z[k|h[n — k| is the response of t

system to z[n).
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Impulse Response & Difference Eq:

B \When I/p to a system Is a unit impulse function
the o/p from the sys: is the unit impulse
response as shown in figure.

Impulse function Digital sys Impulse response

_ I Mlj_f
B The diff: eq: for a sys can be used to calculate
the impulse response for the system.

B Just replace x[n] by §[»] and y[n] by h[n] an
further steps are usual.
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First, replace x[n] with &[7]and y[n]
with h[n] to give

Example7: Find the first 6

samples of the impulse for the

different equation.

Y[n]-0.4y[n-1]=x[n]-x[n-1]
Solution:

h[n]-0.4h[n-1]= &n] - Sln—1]
Starting with n=0:

h
h

h

0
0
And further... h[1]=-0.6
2

1=0.4h[-1]+8[0]-3[-1]
=0.4(0.0)+1.0-0.0=1.0

=-0.24: h[3]=-0.096: h[4]=-
0.0384; h[5]=-0.01536

Dr. Ali J. Abboud

38

Impulse Response & Difference Eq:

QE5F

Dept. of Computer and Software Engineering



1 ) Infinite Impulse Response (IIR)

B [n previous example, the impulse
response never dies away. Reason Is the
new o/ps depends on old o/ps.

B The impulse response that never dies
away or tends to infinite is called |IR and is
typical for recursive diff: eq:.
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B Example8: Find & plot first 6

samples in the impulse response for,

the system

y[n]=0.25(x[n]+Xx[n- 1]+x[n-2]+x[n-3]) |
Solution:

Substituting symbols for impulse :

Infinite Impulse Response (lIR)

response we get
h[n]=0.25(0[n]+3[n-1]+3[Nn-2]+0[n-3])

45t

S0 we get, ;
h[0]=h[1]=h[2]=h[3]=0.25; h[4]=h[5]=0.0

Dr. Ali J. Abboud 40
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Finite Impulse Response (FIR)

B [n example#8, note that the impulse
response drops to zero after a finite no of
nonzero samples.

B If the Impulse response drops to zero after
a finite no: of nonzero samples the
response is said to as FIR and is typical
for non-recursive diff: egs..
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Step Response & Difference Equations

B [tis aresponse for a system to a unit
step function.

B Step function (i/p) is u [N]
B Step response (o/p) is s [N]

B There are two simple ways to find the

step response for a SYS.
1. Use of diff: eq: with u[n] as i/p
2. Determine impulse response and sum it
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Step Response & Difference Equations

B Tutorial#3:
Find & plot the step response for the system
y[n]-0.2y[n-2]=0.5x[n]+0.3x[n-1]
by the following methods:
1. Use of diff: eq: with u[n] as i/p
2. Determine impulse response and sum it
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Step Response of an LTI System

The step response of an LTI system 15 smply the response of the system to a unit step. It conveys
a lot of mformation about the system. For a discrete-time system with mpulse response /[n], the

step response 15 §[n] = u[n]* i{n] . However, based on the commutative property of convolution,
s[n]=h[n]*u[n], and therefore, s[n] can be viewed as the response to mput /s[n] of a discrete-

tme LTI system with umit mipulse response. We know that #[n] 15 the umt impulse response of
the accumulator. Therefore,

UE ih[ﬂ.
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Step Response of an LTI System

From this equatton, ] can be recovered from §n] ustng the relatton

M) =s[n]-s[n-1].

It can be seen the step response of a discrete-time LTI system 15 the runmin g St of ifs impulse
response. Conversely, the mpulse response of a discrefe-tme LTI system 15 the first difference
of 1fs step response.
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Step Response of an LTI System

Smularly, m contmuous time, the step response of an LTI system 1s the runnmg mtegral of 1ts
impulse response.

and the unit impulse response 15 the fust dertvative of the unit step response,

Cas(r)

]J’(f)—w—

5'(1).

Therefore, m both contmuous and discrete time, the unit step response can also be used to
characterize an LTI system.
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Step Response of an LTI System

The unit 1impulse response can be derived from the

unit step response as

ds(t)
dt

hit) = s'(t)

In discrete time

s[n] = u[n| * h[n| = Z h{k]

k=—oo
hin| = s[n| — s[n — 1]
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Discrete-Time Convolution

If 1(n) 1s the system 1mpulse response, then the input-output
relationship 1s a convolution.

It 15 used for designing filter or a system.

Definition of convolution:

y(n) =h(n)*x(n) = gh[i)x(n —A)

| =—a

y(n) =x(n)*h(n) = ix(‘”"""(” —4)

A=—00
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Discrete-Time Convolution

The simplest example of convolution 1s the multiplication of two polynomials. e.g.

y=(4x"—3x+9)(3x* +4x+4)

This 15 calculated by:
y= (f:4.1'3 x3x')+ (—11’3 X 4I)+ (—11’1 X -1)} ((—31‘ % 3x’ )+ (<33 x 4x )+ (-3x x 4)} ((f} X 31‘1)+ (9xdx)+(9x4 ]]
y=12x" +16x" +16x7 - 9x" =12x" - 12x+27x" + 36x + 36

y=12x" + 7" +31x7 + 24x+ 36

Convolution 15 a weighted moving average with one signal flipped back to front.
M
yn]= ) Hk]n k]
=i
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Discrete-Time Convolution

A tabulated version of convolution

n n<0 0 1 2 3 4 5 O 7 n<7
x[n] 0 2 4 6 4 2 0 0 0 0
h[n] 0 3 -1 2 1

h[0]x[n] 0 6 12 18 12 6 0 0 0 0
hl1]x[n-1] 0 0 -2 - -6 -4 -2 0 0 0
h[2]x[n-2] 0 0 0 4 8 12 8 4 0 0
h[3]x[n-3] 0 0 0 0 2 4 6 4 2 0
v[n] 0 6 10 18 16 18 12 8 2 0
hf0]xfn] =x[0] * hf0] +x[1] * h[0] +x[2] * hf0] +x[3] * hfO] + x[4] * h[0]

hi0]xfn] = 2%3 + 4*3 + 6*3 + 4 * 3 + 2 * 3

hiO0]x{n] = 6 + 12 + 18 + 12 + 6

hf1]xn-1] = x[0] * hf1] + x[1] * hf1] + x[2] * h[1] + x[3] * h[1] + x[4] * h[1]
hfljxfn-1]= 2%-1 + 4%-1 + 6%-1 + 4% -1 + 2 * _]

hiljxfn-1] = -2+ -4 + -6 + -4 + -2
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Discrete-Time Convolution

The diagrams below show how convolution works.

2
Il 1_1
0 0123
A single impulse input yields the system’s impulse response
4
.
2
22 2
| ‘ ‘ ‘
0
0123

A scaled impulse mput yields a scaled response. due to the scaling properry of the system's linearity.
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Discrete-Time Convolution

2

0 1

=

01

o

I

1is aemonstrates the use the #ime-invariance property of the system to show that a delayed mput results in an
output of the same shape, only delayed by the same amount as the mput

2
22 2
e
3 g
o1 = ] :
017234 _
! - 1‘
2 = i - -
—>| fa }—'A 1.1
| 01 o
1]

01234

o ———————
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Discrete-Time Convolution

This now demonstrates the additivify portion of the linearity property of the system to complete the
picture. Smce any discrefe-time signal 1s just a sum of scaled and shifted discrete-fime mmpulses, we can find the
output from knowing the nput and the impulse response

No 1f we convolve x(n) with h(n) as shown in Figure 9 we will get the oufput y(n)

0l n13 n1214

This 15 the end result that we are lookang to find
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]

ba

-

0

11
TII (0] » f[-0] =1 x2=2
3-2-1

[

2=10 1

(D] > K1)

Continuing the traverse. At time 1 | the two elements of the input signal are multiplied by two elements

of the impulse response.
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Discrete-Time Convolution

]

it Z 1
3
o 1
2
1 1 1
10 1|2 2
(] > R[2]) +i(x1] < RL1]) =1 +2=23
e = 3 1
3
i 1
=
1 I 1
i 1 2 3 :_;I-
(] > REE]) +i(x1]] < RZ2]) =1 +2=3
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Discrete Time Convolution

Overview

Jonvolution is a concept that extends to all systems that are both linear ancl time-Invariant |Lll| The

1 [llsCl‘EtE tl[IlE mnvnlutmn s exactly the same 11 at of continuous-time ¢ ll I this
easou, mei}; be useful to look at both versions to help your understa LllIl“ 1115 e lu mportant
ecall that convolution is a very powerful to lm 1 CLIININg & system's o m[ [rom knowledge of
|u ary nput and the system’s impu la tesponse. 1t will also be helpful to see convolution graphically
wllh vour own eves and to play around with it some, so experiment with ll‘& plets available on the
net. These resources will offer different approaches 1 lua Icial concept,
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Discrete Time Convolution

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an
LIT system based on an arbitrary discrete-time input signal and the system’s response. The convolution

st 1s expressed as
oo

= Y. eh-H

k=—-0

As with continuous-time, convolution is represented by the symbol *, and can be written as

y[n| =2 [n] «hin]

By making a simple change of variables into the convolution stum, k = n -k, we can easily show that
convolution is commutative;

rln|+hn=hn|«z[n
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Discrete-Time Convolution

Let us call z[n| x hin] =) ,—__ z[k|h[n - k| the

convolution of z[n| and hin/.

¢ The response of an |

yln| = zin
response o

Dr. Ali J. Abboud

%
!

[TT system to zn| is given by

1
!

x h

n, W

lere hin| is the impulse

“the system.
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Discrete-Time Convolution

- R L3 o [ 1 — o - - -_- _ -
Let us consider z[n| * h(n]| =3_,— __ x|k|h[n — K]
Let n — k=m. then kE =n —m

=

Z rlklhln — k] = Z r(n — m|h|im| = h{n| * x[n]

— = — 0

s0 convolution 18 commmutative.

Notation:
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Discrete-Time Convolution

This means that the box 15 an L'T1 system with

impulse response k[n|. In the other case:

It can be shown that the convolution operation is

assoclative and distributive.

Associativity:
(z|n] * hy[n|) * ha|n]| = x[n| * (h1[n] * ha[n])
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Distributivity:

x[n] * (hi[n] + h2[n]) = x[n] * h1[n] + x[n] * ha[n]
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Discrete-Time Convolution: Example 1

Example:
W i :I' b I
hin] = w[n], and x[n] = a™u[n], || < 1, what is y[n]?
xn]=o"ulmn] hAn—Ek]l=uln—Kk]
T =
[ts L[]
—s T+ —
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Discrete-Time Convolution: Example 1

y|n| = z[n] * hin| = Z r|k|hln — K|
If n <0, then z|klhjn — k| =0, so xz[n| * hjn] =0

_ _ o, 0<k<n
If n =0, then z|klhln — k| = 1

(). otherwise

',

so x|n| * hin| = ZE:E] o = 1_1":1

n-41

Dr. Ali J. Abboud 63 Dept. of Computer and Software Engineering



Discrete-Time Convolution: Example 1

Mathematically,

r(k|h[n — k|

ML

r[n| * hjn] =

i
I

— ™

r.*.t-'t“'z.::ﬂ': hin — k]

||
ML

k=—oc
— Z a” ulk|h|jn — k|
=1
- ::’z a a® n>=>0
N 0 n < 0
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Discrete-Time Convolution: Example 2

Consider a system with an impulse response of
hn)=[1111]
[f the mput to the signal 1s

x(m)=[11]

* Thus, the output of the system s y( Z h(A)x(n -

" The result of the convolution procedure in its graphical form 1s :

Dr. Ali J. Abboud 65 Dept. of Computer and Software Engineering



h{im) )

L
-3

1]

i) The definition of the system impulse response h(n) and the input signal x(n)

h(A) x(D-1)

hi4) ¥(0-4)

» A .

v(0) = i hA)x(0—A)=1
A=—w
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i1) The result at n=1.

hid)

T

et =

————

x(1-4)

L 3

3

Dr. Ali J. Abboud

Aid) x(1-4)

'

(1) = ih(i)r(l -A)=2

f————

hiA) x(2-1)

4

3

¥(2) = i h(A)x(2-4)=2

et

A=—m
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1
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Finally

Dr. Ali J. Abboud

A

Discrete-Time Convolution: Example 2

x(3-4) hia) x(3-2)

v(3) = i h(A)x(3—-4)=2

IR I

i

I3 g 1 2 3

x(4-1) M) x(4-4)

v(4) = i h(A)x(4—-A)=1

A=—0o

W —
B

"

g
-
===
—
|
r

Y
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Performance of Convolution

B Convolution can be performed in
numerous ways. Some of those are:
» Direct-evaluation
» Graphical method
» Slide-rule method
» Fourier transform, and
» Z-transform
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Deconvolution

Unwanted convolution is an inherent problem in transferring analog
information. For instance, all of the following can be modelled as a
convolution: image blurring in a shaky camera, echoes in long distance
telephone calls, the finite bandwidth of analog sensors and electronics, etc.
Deconvolution is the process of filtering a signal to compensate for an
undesired convolution.

The goal of deconvolution is to recreate the signal as it existed before the
convolution took place. This usually requires the characteristics of the
convolution (i.e., the impulse or frequency response) to be known. This can
be distinguished from blind deconvolution, where the characteristics of
the parasitic convolution are not known. Blind deconvolution is a much
more difficult problem that has no general solution, and the approach
must be tailored to the particular application.
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Deconvolution

Deconvolution is nearly impossible to understand in the time
domain, but quite straightforward in the frequency domain. Each
sinusoid that composes the original signal can be changed in
amplitude and/or phase as it passes through the undesired
convolution. To extract the original signhal, the deconvolution
filter must undo these amplitude and phase changes.

For example, if the convolution changes a sinusoid's amplitude by
0.5 with a 30 degree phase shift, the deconvolution filter must
amplify the sinusoid by 2.0 with a -30 degree phase change.
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Deconvolution

Reverse of Convolution

¢ Aim of Deconvolution
1. Theoretical: Reconstruction of the Reflectivity function

2. Practical:

e Shorting of the Signal

o Suppression of Noise

e Suppression of Multiples

=> |Inverse Filtering
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Deconvolution

3
i~
=
B

In mathematics, deconvolution is an algorithm-based process used to reverse the effects of convolution on recorded data.- The concept of deconvolution is
widely used in the techniques of signal processing and image processing. Because these techniques are in turn widely used in many scientific and engineering
disciplines, deconvolution finds many applications

In general, the object of deconvolution is to find the solution of a convolution equation of the form:

frg=h
Usually, h is some recorded signal, and f is some signal that we wish to recover, but has been convolved with some other signal g before we recorded it. The
function g might represent the transfer function of an instrument or a driving force that was applied to a physical system. If we know g, or at least know the form of g,
then we can perform deterministic deconvolution. However, if we do not know g in advance, then we need to estimate it. This is most often done using methods of
statistical estimation
In physical measurements, the situation is usually closer to

(fxg)+e=h
In this case ¢ is noise that has entered our recorded signal. If we assume that a noisy signal or image is noiseless when we try to make a statistical estimate of g,
our estimate will be incorrect. In turn, our estimate of [ will also be incorrect. The lower the signal-to-noise ratio, the worse our estimate of the deconvolved signal
will be. That is the reason why inverse filtering the signal is usually not a good solution. However, if we have at least some knowledge of the type of noise in the data
(for example, white noise), we may be able to improve the estimate of f through techniques such as Wiener deconvolution.

The foundations for deconvolution and time-series analysis were largely laid by Norbert Wiener of the Massachusetts Institute of Technology in his book
Extrapolation, Interpolation, and Smoothing of Stationary Time Series (1949) 1%l The book was based on work Wiener had done during World War |1 but that had
been classified at the time. Some of the early attempts to apply these theories were in the fields of weather forecasting and economics.
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Deconvolution

Deconvolution 1s a key area 1n signal and image processing.
It 15 used for objectives 1n signal and 1mage processing that
include the following:

. deblurmring,
. removal of atmosphenc seeing degradation,
. correction of mirror sphencal aberration,
. Image sharpening,
mapping detector response charactenstics to those of
another,
6. 1image or signal zooming, and
7. optimizing display.

Lh da L [ —
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Correlation

o~ -
F
Q.%‘ Transmitted Signal, x(n)
-

Reflected Signal,
vin) = x(n-D) + w(n)
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Correlation

A mathematical operation that closely resembles
convolution is correlation.

Just like In convolution, two signal sequences are
iInvolved in correlation.

Correlation is a measure of the similarity between two
signals as a function of time shift between them.

Correlation is maximum when two signals are similar in
shape, and are in phase (or 'unshifted' with respect to
each other).

Correlation Is often encountered in Radar, Sonar, Digital
communications etc

Correlating two different signals is called Cross-
correlation.

Correlating a signal with itself is called autocorrelation.
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Cross-Correlation

B Cross correlation can be used to identify a signal by
comparison with a library of known reference signals.

Definition: Crosscorrelation

The crosscorrelation between two signals x[n] and y[n] is
given by:

o ]

ry ()= 2 x[n]yn—1] (1)
where the time shift | is called the |ag.
OR
r ()= D An+){n] 2)
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Cross-Correlation

B If we reverse the roles of x[n] and y[n] in (1) and (2)
and hence reverse the order of indices xy, we
obtain the cross correlation sequence

=l

ra(D) = 2 ynlxn—I] (3)

H=—00

Or, equivalently - () i [+ 1)) (4)

M=—00

By comparing (1) and (4) or (2) and (3), we conclude;,
that
Fo () =7 ()

Therefore, r,,[I] is simply the folded version of r,[l].
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Cross-Correlation

B Example: Determine the crosscorrelation
sequence of the sequences

Xn]={..0,02-13712-300,..)
vin]={..0,01,-1.2 241 2500}

Solution: The only difference in convolution and
crosscorrelation Is that in crosscorrelation we

don’t need to fold the sequence. Otherwise all
steps are same.
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X[n] 2 -1 3 7 1 2 3

([n+3 1 2 2 |4 1 2 |5 R (3 )=
14

1 1 (2 |2 |4 |1 |2 |5 Ry (-2)
=33

YT+ 1 1 2 2 4 1 2 5 Rx‘__,{—1 =0

Y[n] 1 -1 |2 2 |4 1 2 |5 R, (07

¥In-1] 1 1 12 2 (4 |1 2 |5 R, (1)=13

¥In-2 1 1 2 2 |4 1 2 |5 R, (2) =
18

¥[n-3] 1 1 |2 2 |4 1 2 |2 R, (3)=16

R,,(1)={10, -9, 19, 36, -14, 33, 0, 7, 13, -18, 16, -7, 5, -3, 0}
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Auto-Correlation

B Autocorrelation is the special case of
crosscorrelation, in which one signal iIs compared
with its time shifted version.

Definition: Autocorrelation
The autocorrelation of a real signal x[n] is given by:

F(D—Z x[n]x(n—1]

H=—00

where the time shift m is called the lag.
Or equivalently as, @)=Y afn+/Jxn)
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Properties of Auto-correlation and Cross-correlation
Sequences

Let us assume that we have two sequences x[n] and y[n] with finite energy from
which we form the linear combination

a x[n] + b y[n-]
where a and b are arbitrary constants and k is some time shift. The energy in
this signal is

i[m:[nhby[n —E]I_ —a if [n]+bz i},ﬁ[ﬂ_{]

H=—00 H=—00

+2ab il’?[ﬂ]_}[ﬂ —[]= azrjﬁ({))ergﬂ}:(U)Jr Zczbrjt}:(f)

Note thatr,(0) = E, and r,(0) = E,, the energies of x[n] and y[n] respectively.
It is obvious that

ﬂErH(U)erE%,(U)Jr 2::1!9?@(,%) =0
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Properties of Auto-correlation and Cross-correlation
Sequences

Now, assuming that b = 0, we divide the above equation by b? to obtain

2

rﬂ(m[g} +zn}.[f][§] +7,(0)>0 )

This is a quadratic equation. Since the quadratic is non-negative, its
discriminant must be non-positive. That is,

4[’“;[3]— ?‘_H(U)F}T(O)Jﬂ 0 (4)

Therefore, the crosscorrelation sequence satisfies the condition that
‘r_t:u (‘?)‘ = ‘\XF_‘D.’ (O}ru (O): ‘\XETE'L (5}

In the special case i-e in Autocorrelation where y[n] = x[n], (9) reduces
to
. (1) <7, (0)=E, (6)
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Properties of Auto-correlation and Cross-correlation
Sequences

» This means that the autocorrelation sequence of a signal attains its
maximum value at zero lag.

» If any one or both of the signals inveolved are scaled, the shape of the
cross correlation sequence does not change; :::nlly the amplitudes of the
crosscorrelation sequence are scaled accordingly.

It is often desirable in practice to normalize the autocorrelation
and crosscorrelation sequences to the range from -1to 1. The
normalized autocorrelation sequence is defined as,

p ()= "= "

» e (0)
Similarly, we define the normalized crosscorrelation sequence

o, ( f) _ ?fu'(f )

J7l0)r,(0) (8)
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1M\ Properties of Auto-correlation and Cross-correlation
ok Sequences

B One other important property of
autocorrelation is that its an even function.

»\We know that r, (I)=r,, (-]), so

»If we make x[n]=y[n] (autocorrelation) the

condition becomes r, (l)=r,, (-I), Hence the
autocorr: function 1s an even function.
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Difference between Convolution and
Correlation

B Convolution is usually between a signal
and a filter; we think of it as a system with

a single input and stored coefficients.

B Crosscorrelation is usually between two
signals; we think of a system with two
Inputs and no stored coefficients.
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