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Lecture Outline

e Continuous Time Fourier Series

 Discrete time Fourier series

* Discrete Fourier Transform (DFT)
* Fast Fourier Transform (FFT)

e Decimation in time Fast Fourier Transform

 Decimation in frequency Fast Fourier Transform
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Fourier Series Representation

Fourier Series:

B Fourier series allows any periodic waveform in
time to be decomposed into a sum of sine and
cosine waveforms. The first requirement in
realising the FS Is to calculate the fundamental
period, T, which Is the shortest time over which
the signal repeats.

B For a periodic signal with fundamental period T
sec, the FS represents this signal as a sum of
sine and cosine components that are harmonics
of the fundamental frequency fy = 1/T Hz.
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2ant 2mnt

x(1) = Y A, cos

B The Fourier series can be Ewiﬁen in a number c:f[dlfferen\t ways:

|+ Y B, sin
A J

9 . 1
A, cos [‘}Tm\!+ B sin [‘EHI\E
T ) T )

[ Z

= A, +

0

]
]
—

= A, + i Aﬂ COS (E;‘mf_ar)+ B, sin (}'.’ ;*mfnz)
n=l
=4, + i |4, cos (ne,t)+ B, sin (no,t))
Hal
= 3[4, cos (no,2)+ B, sin (ne>,t)] (1)
He={

A, + A, cos (r.’:)_:,I)—F A, cos (2 m_ﬁr)+ A, cos (3&:_3:)+
B, s (r:r}, I)+ B, sm (}'.'r:r),z)+ B s (Er:r), I)—|—

Where A_and B, are the amplifudes of the cos and sin waveforms W, = E—I'T rad /sec is angular frequency
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Fourier Series Representation

¥ In more descriptive language, the above Fourier Series
says that any periodic signal can be reproduced by
adding a (possibly infinite!) series of harmonically related
sinusoidal waveforms of amplitudes A, or B,..

B Therefore, if a periodic signal with a fundamental period
of say 0.01 sec is identified, then the Fourier Series will

allow this waveform to be represented as a sum of
various cosine and sine waves at frequencies of 100 Hz

(fundamental frequency), 200 Hz, 300 Hz (Harmonics)
and so on. The amplitudes of these components are
given by A0, A,, By, A,, B, ... and so on.

B So, how are the values of A, and B, calculated??
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Fourier Series Representation

\ . : .. L : .._' -.I ..' =
| - =~ time

3
a5 [oon(252) 0,0 (5]

| time n=1
1/3
Ad = R
I~ d
time
B e X
I

L

time:

Fourier series for a periodic signal x(t) . If we analyse a periodic signal and realizethe
cosine and sine wave Fourier coefficients of appropriate amplitudes A, and B,,, then
summing these components will lead to exactly the original signal
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Fourier Series Representation

For that, we multiply both sides of (1) by cos (pwgt) where p is any arbitrary
positive integer, then we get:

cos(pant)x(t) = cns(p.:q]a.‘)z [A cosnet)+ B sm(ﬂfq]a.‘]] (2)
Integrating Eq: (2) over one period, T, e get.
T

jcms{pmﬂrjx{r}dr j{cns{pmﬂa‘}z [ﬁ[ Cos (Pm:r I]+B sin (H mﬂr]]}dr

a 1]

Using the trigonometric identity 2cosAsinB=sin (A+B)-sin (A-B), and sin(2mt/T) = 0,
note that the second term in the equation (3) is equal to zero, i.e.,
T

i_[ {BH cos(payt) sin(ﬂ&bf)}df = % I{sin(p +n)at— sin(p — H)&bf}{ff
i !

T T
e e g e

0 0
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| J)} Fourier Series Representation

Eq: (4) is true for all positive integers of p and n.

Using trigonometric identity 2cosAcosB=cos (A+B)+ cos (A-B), we find that the first term
of Eq: (3) is only equal to zero when p #n, i.e.,
T T
[ {;i I:ni(pm:,r):nﬂ m::r:, = [ cos( p+ H}ﬂ}:,r+cuﬂlip—njm:,r}dr=[] (3)
] 4]

If p=n, then

T
14, cos( pa,f) cos(na,t dt = ‘{n‘l’ cos (na,t)dt
D

£ P ]

AT AT 6
2nwyf)de = —[1.::*: = (6)

2 D 2

Therefore, using Eq: {6], (%), (4), and (3), we r‘IDtE that:

j{ms( poot)x(t)dt = AhT

| 2 ¢
and therefore, since p=n, 4 %j {cos( nw 1) x(t)}dt (7)
0
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Fourier Series Representation

By multiplying Eq: (3) by sin (pw,t) and using a similar set of simplifications we
can show that:

T
B, = %J' {x(¢)sin( ne,t) }dt (8)
0

Hence, the three key equations for calculating the Fourier Series of a periodic
signal with fundamental period T are:

x(t)=> 4, cos [ 2';&: ] + > B, sin [2.—:;::]
=0 n=1

T
4, = %j {x (¢ )cos( na,t) ldr
2 T
B, = F{ x (t)sin( new,t) }dt
Dr. Ali J. Abboud 9

Dept. of Computer and Software Engineering



Complex Fourier Series

From Euler’s theorem, note that: _ _ _ |
e’” =cos(w)+ jsin(w) cos(®) = (e +e™ )2 sin(w)= (e —e‘*”""]f 2

k. &

Substituting these values in Eq: (1), and rearranging gives:
™

fe.o] ] \ ] !
TR | . TR |
x(t) = A, + Z A, cos | | + B, sin | ]
n=1 L \ S v T )
_ ra = . _ . "“-.I i . ) _ i "‘-,,I
o E_._IHI:IJ._[_I_ g JH GFpl | E-..-'H‘:'J-\.[_ e JR &yl \
—_ ".{:I + Z .:'{H " =+ EH - N I
n=11] h - A h, < A
@ [~ ™, i ™
_ ‘{.:l n Z .:i_rz + f_rz- E_j.r!m':[ n Jin _ fn- E'_jﬂm':[]
mal [ W = . hoo= ~J] .
= - ™ = - 5
1, — JB, | _; 4, + JB, | _-;
— “t R 1 Ju Gyl “Im n - JrRart g
= A, + 2. - C +Z| - e (9)
Hel e A neml e A

For the second summation term, if the sign of the complex sinusoid is negated and the
summation limits are reversed, then we can rewrite as:

o g . -1 # . . - |
I(Q: "&E +Z Lﬁﬂ fﬂn]emm.ﬁ_'_ Z LAH‘F jBH]EJH&}gI _ Z CREJH&}'JI (1':'}
r=1

2 2

r=—%0 =—1
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Complex Fourier Series

where Cn In terms of the Fourier series coefficients of Eq. 7 and & gives:
C,=4,
C.I‘! = I:"{n _j an
C.=(4,+7B)
From Eqg. 11 note that forn = 0,

forn =0
forn <0 “1}

2
2

. T T
C,= 4, _;E” = %!x{r} cos(ne,t)dt— j %! x(t) sin(na,t)dt
__jr:(a.‘ [cms(ﬁ!m r)— jsin(na, I]l —jr{:je RS Ay (12)

Forn <0, it s clear from Eq. 11 that, C,, C_ .where ™™ denutes complex
conjugate. Therefore, the two impurtant equation for complex exponential Fourier
series are -

x(t)= Y C,e’"

n=—o

T
1 .
C = —\| x(t)e 94t
. Tj: (1)
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Example

The ea:se of working with complex exponentials can be illustrated by this simple
example.

Example 1: Simplify the following equations in to a sum of sine waves:

sin( e f)si( )

T'hﬁ requires the recollection (or rederivation!) of trigonometric identities to
yield:

sin( e f) sin(@,f) = %cns(fq —,)t+ %cns(fq + oy )t

However, it is relatively easier to simplify the following expression to a sum of
complex exponentials:

@ (4 1
Eflgjz — e

Although, seemingly a simple comment this is the basis of using complex
exponentials rather than sines and cosines; they make the maths easier. Of
course, in situations where the signal being analysed is complex, then the
complex Fourier series must be used!

jloy+w, )t

Dr. Ali J. Abboud 12 Dept. of Computer and Software Engineering



Fourier Transform

B The Fourier Series allows a periodic signal
to be broken down into a sum of sin and

Cos components.
B However, most practical signals are
aperiodic!

B Therefore, the Fourier Transform was
derived in order to analyse the frequency
content of aperiodic signals.
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Discrete Fourier Transform

The DT Fourier Transform (DTFT) of a finite energy
discrete time signal x[n] is defined as:

X(w)=X ()= i x[nle™”,  wel-n,7]

X(w) may be regarded as a decomposition of x[n] into its frequency
components.

» It is not difficult to verify that X(w) is periodic with frequency
27.

The Inverse Fourier Transform of X(w) may be defined as:

x[ﬁ]:zif

X(w)e!™do
T vix
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Discrete Fourier Transform

B Nofation: x[n] — X(w). x[n]FF 1{X(w)). X(o)=Flx[a])
B Signal has a transform if it satisfies Dirichlet conditions.
B X(w)is called the spectrum of x[n]:

| X (o) |= magnitude spectrum.,
X(w)= phase spectrum,

The magnitude spectrum is often expressed in deceibels (dB)
B DTFT describes the frequency content of x[n]

B Forreal signals
» LYio)|=X"-on)| — Even function, and
» phase _X(-o) =-__Xo) — Odd function.

X(0)= X ()| e’F@ = {

2l

X(w)= > x[n]e ™

H=—2x

:q::[ﬂ]:L X(o)e!dew
2 <27
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Energy Density Spectrum of Aperiodic
Signals

Energy of a discrete time signal x[n] is defined as:

= 3 |xln)

Let us now express the e’ﬁé?gy EX in terms of the spectral
characteristic X(w). First we have

E = i x[nlx’[n]= i x[ﬁ]{z—{r J: X (m)e_“fmdm}

=10 =00

If we interchange the order of integration and summation in the
above equation, we obtain

E, = 2—; f X*(m){ ix[ﬂle‘fm }dm: ﬁf

Therefore, the energy relatlnn between x[n] and X(w) is

£~ Zhol - flxol ol Tgpguare metion o)

X(m)fa’m
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") Energy Density Spectrum of Aperiodic
- Signals

B The spectrum is, In general, a complex
valued function of frequency.

B The quantity S, (w)=|X(w)|? represents the
distribution of energy as a function of
frequency and it is called Energy Density
Spectrum of x(n).

BS (w) does not contain any phase
iInformation.
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Energy Density Spectrum of Aperiodic
Signals

Example - 1: Determine DTFT and sketch the
energy density spectrum S, (w) of the sequence:

X[n]=a" u[n] lal<

Solution- 1: Y(w)= ix[ﬂ]e_jm

H=—o0

X(w)= i ae " :i (ﬁ:ﬁe‘""""
Using the geometri¢ sequence, provided |a|<1, this
sum Is:

1

()= 1— e

)
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.y Energy Density Spectrum of Aperiodic
- Signals

Energy Density Spectrum is given by

Su (@) =X (@) = X ()X (@)

S (o) = 1 ,. : ,.
(1—ae7'°) (11— ae’?)
1
Sxx (G‘J): 2
l-a(e’™ +e ™ )+ a“
5. (@) = :

_ 1-2acos o +a’ _
Figure on next slide shows x(n) and its corresponding

spectrum for a=0.5 & a=-0.5
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Energy Density Spectrum of Aperiodic

Signals
1 i
- .ﬂﬂﬂ-j
S xllos) 1 — 2a cox o + a2
i
3
=2
1
N e ———
—ar _ = O o ™
] 2
S (er) = ! .a=—0.23
= 1 — 2a cos ar + a?
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Energy Density Spectrum of Aperiodic
Signals

Example — 2: Determine the Fourier Transform and the energy density
spectrum of the sequence

A, 0<n<L -1
x[n]=

0. otherwise
Solution — 2: I —jal
_ _ 1—e~ ity SIn(al/ 2)
X(w nle e’ =4 =47 @
)= Zt{ %‘ 1-e7¢ sin(@/ 2)
The magnitude of x[n] s
| 4 | L, w = 0
X (@)= | A | > (mﬂfz): otherwise
sin (@ /2)

and the phase spectrum is

ZX(@) =LA 4— (L-1) 451”%?
Sin
The signal x[n] magnitude and phase Is plotted on the next slide.
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Energy Density Spectrum of Aperiodic
Signals

nlat
o
VL

. Phase response l
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Some Common DTFT

Sequence Discrete-Time Fourier Transform
a(n) |
3(n — ng) s
| 2w d(w)
e/n® 2nd(w — axy)
|
a"u(n), lal <)
| —ge™ /™
| |
—-a"u(~=n-1), lal > 1
| —ge™ /™
|
(n 4+ 1a"u(n), lal < | R
(1 —ae '#)
COS Ny i w + ay) + 1w — axy)
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Properties of DTFT

B A FT for Aperiodic finite energy DT signals
described possesses a number of properties
that are very useful in reducing the complexity
of frequency analysis problems in many
practical applications.

B For convenience, we adopt the notations
X[n] £ X(o)
X[n]=FH {X(0)j
X(o)=F'(x[n])

Dr. Ali J. Abboud 24
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Properties of DTFT

B Symmetry:

» Real andeven x{n) — Real and BEven X{w)
» Real and odd x{n) — Imaginary and odd X{w)
= |lmaginary and odd x{n) — Real and odd X{w)

= lmaginary and even x{n) — Imaginary and even X{uw)
B Linearity:
e If x[n]lt— X, ()

x.[r] e X, ()

a,x, [1] + a.x.[n]<«——E 5 a X, (») +a, X, (®)
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Properties of DTFT

Example — 3: Determine the DTFT of the signal x[n] = al"l
Solution — 3: First, we observe that x[»] can be expressed as: x[n]=x,[n]+ X,[n] (inearity

prop:) a". n=0 a. n<0
Where x[n]= and x,[n]=
0. n<0 0., n=0
Now, Xl(m) = Z X, F“I]E.' Jam Z q"e e — Z (ﬂe—.fm)"
F=— =0
. . ~ . ]
=1+ae?+lae” | +\lae™“ ] +....= :
S R R —
o -1 -1
and, X,(w)= Z x[nle”™ =Y ae = (gev"*"} )_"
X Jd’.’-‘
=3 (ae”] = ae’® + (ae’®)? +..= L&
=1 1-ae’”
1 ae’” 1—a’
X (ow)=X(o)+X,(w) = —+ — = :
1—ae 1— ae’ I—ZHEDS{?J—I-E;;‘;_
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Properties of DTFT

B Time shifting:

»f  xn<Esx (0

» Then x[n—k]«ZE 5 e X(w)

Proof: Taking FT of x[n—k]

[ x| n— k]—z x[n—kle 7"

Fl=—1

Lletn—k=m orn=m+k

)

- Flx[n—k]]= i m]e /" =77 N x[mle " = e X (w)

=00 =00

Similarly for x[n+k], F{X[n+Kk]}=elWkX(w)
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Properties of DTFT

B Time reversal:

p |f  nl—X(0)

» Then [-n]2E 5 X (-o)

Froof: Letm=-n

X

Fl-n]|= > x[-nle™

H=—X
Fl-n]|= > x[m]e’* ™ = x[m]e? " = X(-w)
=1 M=—0
Dr. Ali J. Abboud 28
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Properties of DTFT

P Convolution: This theorem is one of the most powerful
» |f - tool. If we convolve 2 signals in time
x[n]¢«—— X, (@) Domain, then this is equal to multiplying
xz[ﬁ].#gfz (o) Their spectra in the freq: domain.

xn] = x[n]* x[n] <2 X(0) = X, (@)X, (@)

xn]=x[n]*x,[n]= 2 x [kl [n—k]
Multiply both sides of this eq: by e and sum over all n, we get

> afnle = Y {ix[k]y[ﬂ —k]}-fm

F=—00 H=—w| k=—x

Interchanging the order of summation and making a substitutionn -k = m,

X(@)= Y = [H{ > v [m]}e v = {Z x [He”“}{ > x;[m]e—fﬂ

k=—x m=—a k=—x m=—ax

Proof: Recall convo: formula

X(@) =X ()X, (o)
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Properties of DTFT

Example — 4: Determine the convolution of the sequences x,[n] =Xx,[n] =[1 1 1]

Solution — 4 . | | |
X(0)=X,(@) = Y x[n]e”™ = x[n]e”™
r=—1

H=—00

_ i 0 —ja | _ | J@ —j@
= [.rl[—l]e’ +x,[0)e” +x,[1]e™ ]_ [e’ +1+¢e™ }
=1+2cosm®
Therefore, X(0)= X ()X, ()= [:1+2t.:u::|s-.r:a:i]2 =1+4cosmw+4cos @
4
=1+4 cnm£(1+cn52m) =3+4cosw+2coldw
—3+20e" + 07 )+ 107
X()=X() X, ()= + 26" +3+ 2677 127

Hence the convolution of x,[n] and x;[nlisx[n1=[1 2 3 2 1]
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B Correlation:

Properties of DTFT

» If -
x[n]e—— X (@)

F
A Aol
» Then | — 2@

X)X

i
<

2 S, (@) =X (@)X, (-®)

B The Wiener- Khintchine Theorem.
» Let x(n) be a real signal, then

r (D« S (o)

» That is, the DTFT of autocorrelation function is equal to its
energy density function. This is a special case.

» Autocorrelation sequence of a signal & its energy spectral
density contain the same info: about the signal.

Dr. Ali J. Abboud
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Properties of DTFT

Proof: The autocorrelation of x[n] is defined as

i

ro[n]= Z x[k]x[k —n]

K=-x

p=—x | k=—m

Now — Flr,[n]]= 3 {f e[k e[k - ]]

Re-arranging the order of summations and making Substitution m= k-n,

=0

Flr. )= ix[k{ Zl{m]}e‘f""’[k—’”} _ { ix[k]e"fﬂ{ ix[m]eﬂ—w}}

= X(0) X (-0) 4 X() =5, (o)
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Properties of DTFT

B Frequency shifting:
p If X

> Then |/ y[n]« 2 X (0 - a,)
According to this property, multiplication of a

sequence x(n) by e"" is equivalent to a frequency
translation of the spectrum X(w) by w,

Proof: ) )
F [.r[ﬁ]e"’“’"f*”] = x[nje’™ e =) Ank? " = X(0-0),)

H=—% H=—x
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Properties of DTFT

B Modulation theorem:
p If dn]leLf— X (o)
» Then

x[n]cosayn«=EE }%[X(m+ @,) + X (oo—a,)]

B Parseval's Theorem:
» If xnl—— X (a)

x[n] et X,(2)

» Then

= £ ]. E B3
> x[n]x[n]«—— - I_Eﬁl(msz(m)dm

H=—®
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Properties of DTFT

P

Proof: g A
= RH.S.= : .[Xl &J)X m dm— J[ [ﬁ}z }X(m)dm

2
—-x

Es

x

— Z x,[n] S IX (w)e ' "deo = le[ lx;[n]=L.H.S

H=—1X

H=—00

In the special case where X4[n] = x,[n] = x[n] the Parseval's Theorem reduces

to: = )
” > () =

H=—x

We observe that the LHS of the above equa’fmn is energy Ex of the Signal and
the R.H.S is equal to the energy density spectrum. Thus we can re-write the
above equation as:

5
i

| 1 %
E.= Y k] == _Q.[ S_(@)do

H=— i _ i
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Properties of DTFT

B Multiplication of two sequences (Windowing theorem):
» If

Il[H]{L}E'II:&})
J:J[H]*;}XJ(&})

» Then

1 »=
% = x[nlgn] <= X, (o) = Tj XA (w—A)dA
LI E

This theorem states that: The multiplication of two time domain
sequences is equivalent to the convolution of their Fourier

transforms.
Proof: ) i} -
J!?'?[.:'i.'fl[[I"'E].:'El [ﬂ]] = le[n]xl[n]e—jwn _ Z |:E jkr(ﬂ}gjindﬂ:|1:l[n]€—jwn
L

M=—00

1 f - - - —jla—Ai)n f y v -
1 ;xlw{le[ﬂ]e o }: L [ (i (- a2

-

——
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Properties of DTFT

B Differentiation in the Frequency domain:

» If x[n]fs X (@)

» Then
]« d‘zij})
Proof: _~ —jon
X(w) = > x[nle
dX(ﬂJ) d - — jam - d _ jen
= x[rnle™ = x[n]—e™
d dm[gx ! } ng ; ]dm
dX (o) < _jem
o —;xx[ﬂ]ﬁ (—Jjn)
dX () -
dm H;:_H[H
Dr. Ali J. Abboud 37
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Properties of DTFT

[ ) Errearity: ax, [H]+ a,x, [A] « 25T 5 g X, (o) + a, X, ()

B Time shifting: X —&l+«——— & X (@)

DFFET —
B Conjugate: x ¥ [r2] < > X F(e™7 )= X * (w)

m  Time reversal: x[—n]<«—"2r > X (—a@)

B Frequency shifting: €’ x[n]<«< > X (o —ay, )

| o . dX (@)
m Differentiation: roc[r ] -

[ Convolution: x[x]=x [#]*x,[#]«——— X (@) =X, (=)X, (=)

E Correlation: |, _ omr o () = X, ()X, (—e)

x,xr_

m VWiener khinchine: »_(IN« 2% . 5 (@)

DIFT 1 = - - - -
m  Multiplication: % =X%lEla[He—— X(e)= EI—: A(AYF (@ —A)dA

n Parseval's Theorem: i x, [m]x;[n] «—FF— ,Il_? _1_TT X (62) X (e0)deo
N Modulation Theorem: ™ . o
x[#] cos s, {L};[I[m + e, 3+ X (o — e, W]

——
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Properties of DTFT

Tutorial:

~ind the DTFT of y[n]=-a"u(-n-1), provided |a|>1
Prove correlation property of DTFT.

Prove modulation theorem of DTFT.

Prove differentiation property of DTFT.

An LTIl system is characterized by its impulse
response h[n] = (1/2)"u[n]. Determine the spectrum
and the energy density spectrum ofthe output
signal when the system is excited by the signal x[n]=
(1/4)"u[n].

oA W=
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Discrete Fourier Transform

BERecall the definition of DTFT: -
X(w)= Z::r:[n].sa'_""ErH > (1)

H=—00
EWhile the DTFT is useful from a theoretical point of view, its numerical evaluation
poses difficulties:

» [he summation over » Is infinite
» The varnable w iIs confinuous

Ein many situations of interest, it is either not possible, or not necessary to
implement the infinite summation in (1).

» Only the signal samples of x[»] from »n=0 to N-1 are available;
» The signal is known to zero outside this range; or
» The signal is penodic with pernod V.

Ein all these cases, we would like to analyze the frequency content of signal x[#]
based only on the finite set of samples x[0], x[1], ... , x[N-I].

E'We would also like a frequency domain representatiﬂn of these samples in which
the frequency variable only take a finite set of values, say w, for t=0, 1, ..., N-1.

EThe Discrete Fourier Transform (DFT) fulfils these needs. It can be seen as an
approximation to the DTFT.
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Discrete Fourier Transform

Definition: Discrete Fourier Transform

The N-point DFT is a transformation that maps DT signal
samples {x[0]. ... .x[N-1]} into a periodic sequence x[X],
defined by

x[k]= DFT{x{n]} =Y a[nle ™™, kez

r=0

Remarks:

» Only the samples x[0]. ... .x[N-1], are used in
computation.

» The N-point DFT is periodic, with period N: x[k+N]=x[x].
Thus it is sufficient to specify x[k] for &=0.1, ... , N-1.
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Inverse DFT (IDFT)

Definition: Inverse DFT

The N-point IDFT of the samples x[0], ... x[N-1] is defined as
the periodic sequence x[k], defined by:

N-1
¥[n)=IDFT,{X[k]}= ﬁ_lfz x[kle* ™Y, keZ

=0

Remarks:
» In general, x[n]=x[n] forallne Z

» Only the samples, x[0]. ... x[N-1], are used in the
computation.

» The N-point DFT is periodic, with period N: x[n+ N] =x[k]
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IDFT Theorem

IDFET Theorem:
If ATX] is the N-point DFT of {x[0]. ... x[N-I]}, then

Remarks: x[n]=x{n], n=0]1,..N-lonly.

» Theorem states that X[#] = x{n]for »=0.1. ... . N-1 only.

» Ingeneral the values of x[»] for » < 0 and for » = N cannot be recovered from the DFT

samples X[k]. This is understandable since these sample values are not used when
computing XTk].

» However, there are two important cases when the complete signal x[»] can be
recovered from the DFT samples ATk] (7—=0.1...., N-1)

+ x[m] is periodic with period N.
+ x[#] known to be zero for » < 0 and for n = V.

N-1 N
x[k]= z x[n]e 7
p=()

1 N-1

b _ - 5 k Jlakn' N
x[n] NZ x[kle

p=0
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Example

Example: Prove that DFT Is periodic with period V.
Proof: we know that, DF T Is defined as:

- 1o | AT
X[ k] _ Z ¥ [ﬁ:l E—ﬂr.#. 2anl N
Therefore, 5 "= N
X[k+N]=Y x[n)e/E2my _j2mIN -2
. . n=l Z=
Sine g™ =1

- X[k+N] Zr[ﬂ le 7™ ¥ =xk] hence, proved.
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Example

Example: Find the DFT of x[n] =[1 0 0 1]

N-1 3 ;
Solution: X[k]=>_ x[n]e N = x[n)e 2 = [ rle~
n=0 =0 s
3
Now, — x[0]=73" x[n]=x[0]+ x[1]+ x[2]+ x[3]=1+0+0+1=2
=10
3 o .
X[1]1=" x[nle™ ™™ = x[0]+ 0+ 0+ x[3]e 7"
r=1{
=1+1.e™77% =1+ cos(3f) - jsin( ) =1+ j

X[E] = ZE: I[F“I]E_JEH — I[D]+ I[S]E—J‘an

r=10
=1+1.[cos( 3xn)— jsin (3an)] =0
3
X[3]=> x[n]le ™% = x[0]+ x[3]e™ """  =1— ]
r=1
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Example

1 3
Solution: x[n]=—> X[k]e/*™*
Nio
1 1
0]=7 X AT =42+ 0+ +0+(-9]=1

[1]= ZX[k gl =_iz'[k]ef“ f =i 241+ +0.27 +(1-1e” 2] =0
:EZJ{[& et 4 _ZX[k]e”ﬂ [”+(1-|—z)e" +0.67 +(1-1)e|=0

k=l
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Properties of DFT

Periodicity: _
The N-point DFT is periodic, with period v: X[+ N]=x[k]

Linearity:
If x[#] and y[#] have N-point DF Ts X{k) and ¥(k), respectively,

ax[n]+ by[n)|<«ZL s aX (k) +bY (k)
In using this property, it is important to ensure that the DFTs are the
same length. If x[#] and y[=n] have different lengths, then shorter
sequence must be padded with zeros in order to make it the same
length as the longer sequence.

sSymmetry:
If x[~] Is real-valued, X{k) is conjugate symmetfric,
X(k)=X*((-k) =X*((N-Kk))

and if x[#] is imaginary, X(k) is conjugate antisvmmaelric,
X(h)=—-X*(—k) =—X*((N —Kk))y
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Example

Example: A finite duration sequence of length L is
given by {1, 0<n<L-1
x[n] =

0. otherwise
Determine the N point DFT of this sequence for N=L.

Solution: The DTFT of the sequence was calculated as

X(W) — S“'](“,Lf 2) E—jw (L1)/2
sin(w/2)

The N point DFT is simply X(w) evaluated at the set of N equally
spaced frequencies w,=2nk/N, k=0,1,....N-1. Hence

X(K) = sin(kl./ N) o WK@L-D/N
sin@@k/IN)
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Example

B Example: Find DFT magnitude

5 [
and phase spectra for the samples
of the signal selected in figure. af o o
Also verify that IDFT reproduces
these samples. T
B Solution: 2 o
K [ Xk |XIK]| =# radians 1+
0 |9 3 0
a
1|+ | 72801 0.2782 l
AF
1|3 3 3.1416
o |13 |72801 | -02782 2 '1 n '1 2 2 4
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Example

o b i
5 -
T b i o w b b
EL
4 -
3 0.5
1 o1 |
o } ) !
| 15
1 -1F
:l-:' 2 4 i) & 0 2z
magnitude spectnem 4.5k
-2 5L
=T ] ] L
~ a:l 2 i 51 8 10 12
ahEse specium
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Example

Tutorial: o

1. Findthe DFT of x[n]=[2102] |

2. Find the IDFT of X[k]=[1+i 0 1 | 0
1-1] s

3. Find the DFT of the 4-point i
sequence x[n]=[0123] s

4. Find the 4 point [DFT of the | P oo
sequence [6,-2+2),-2,-2-2)]. s}

5. Find magnitude spectrumusing +—b0—or—0o &

both DTFT and DFT for the
signal shown here.
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Fast Fourier Transform (FFT)

Recap:
B Let x[n] be a discrete-time signal defined for 0 €£n < N-1.
BThe DFT: N-1 _
X[k]= 3 «[nwy". k=01..,N-1 (1)
n=0
B Notes: Wy, =e*" =cos(2r/N)+ jsin(2z / N)

» Note that the direct computation of DFT requires A? computations.
The same istrue for IDFT
The FFT only requires Nog,N calculations.

The computational saving achieved by FFT is therefore a factor of Mog,N. When N is
large this saving can be significant.

yYwyry

» The following table compares the number of calculations required for different values
of N forthe DFT and FFT:
N DFT FFT
32 1024 160
1024 1048576 10240
32768 |~ 1 x10° ~05X 108
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Fast Fourier Transform (FFT)

B Whatis FFT
» FFT stands for Fast Fourier Transform
» FFT is a method of computing the Discrete Fourier Transform (DFT) that
exploits the redundancy in the general DFT equation given in (1).
» The FFT is not a new transform; it refers to a family of efficient algorithms
for computing the DFT.
» Typically, FFT requires Nlog, N while DFT requires N2

B Basic Principle
» The FFT relies on the concept of divide and conquer

» Itis obtained by breaking the DFT of size N into a cascade of smaller size
DFTs.
» To achieve this:
+ N must be a composite number
# The properties of W jmust be exploited, e g ;

wre=w" (2)
W =W (3)

Dr. Ali J. Abboud 53 Dept. of Computer and Software Engineering



Example

Example: We can highlight the existence of redundant computations in the DFT by inspecting Eq. (1).

Using the DFT algorithm to calculate the first four components of the DFT of a signal with only 8
samples requires the following computations:

XT0] = x[0]+ x[1] + x[2] + x[3] + x[4] + x[5]+ s 6] + x[7]
X[1] = x[0]+ x[1 " 4 X[2]g " 1 <3175 + <[] + 1[5]0 " + [ 61 ° + x[T]Wy

1
-2 -4 -6 -8 -10 -12 -14 (4)
X[2]=x[0]+ +{1]W = + x[2]W; " + x[ 3] "+ x[ 4]0~ + x[5]W; " + x[6]W;  + x[ 7]y
X[3] = x[0]+ x[1]7; " Ha[2]Wg |+ x[31W; + 2[4+ A[SI5 = + A 6105 +x[TI;
Hnwever note that there is redundant (repeated) terms |n Eq (4). Fore.g., consider 3 term in 2 line of
q. (4). -2) iz
j <

x[2]W; % = x[Z]e \8) — x[2]e ?

Mow, consider the computation of third term gﬂ the fourth line of Eq. (4):

i | —jix . -jx -JjT
20 =x[2]e L3 =x[2]e * =x2]le e > =—x[2]e 2
Therefore we can save one multiply op eratmn by noting that }:[”’]ﬁ"5 r[”]H"J'

In fact because of the periodicity of x[K]W. \.- every term in the fourth line of Eq. (4) is available from the
computed terms in the second line of the equation.
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Example

More generally, we can show that the terms in the second line of Eq. (4) are:
—jl;'ﬁfc —j

MK =akle * =afk]e

and for the terms in fourth line of Eq. (4):

Gk —J% 3 | E_I_E P

KT = k] 2 =afkle 2 =xlkle > *

Ak Tk Tk
‘.-’_ ‘.-’_ —J T

=xlkle “2e * =afk](-))"e "t =(=j) lkIF

This exploitation of the computational redundancy is the basis of FFT which allows the
same results as the DFT to be computed, but with less computations.
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Different Types of FFT

B There are several FFT algorithms sometimes grouped via the
names Cooley- Tukey, prime factor, decimation in time,
decimation in frequency, radix-2 and so on. The bottom line
for all FFT algorithms is, however, that they remove
redundancy from the direct DFT computational algorithm of

Eq. (1).
Notable Examples of FFT Algorithms:
B NV=2"— Radix — 2 FFTs. These are the most commonly used

algorithms. Even then, there a
Radix-2 are the most important. Only in very
> DE‘Clmatlﬂn In Tlme (DlT specialized situations will it be more
advantageous to use other radix-type FFTs.

» Decimation in Frequency (
B N=r¥— Radix — » FFTs. The speciatcase+= 3 and r = 4 are
We'll focus on this type only in this course j

not uncommon.

B More generally, N= p,p,p,...p; Where the sare prime
numbers lead to so c]{) d mixed-radix F
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Radix-2 FFT

B We only consider radix — 2 FFTs (i.e., N =2"), where
» DFT, is decomposed into a cascade of v stages
» Each stage is made up of N/2 DFT,

Radix — 2 FFT via Decimation in Time:
B Let x[#n] be a discrete-time signal defined for 0 =»n = N-1, where N = 2",

B The basic idea behind decimation in time (DIT) is to partition the input
sequence x[xn], of length », into two sub-sequences, i.e. x[2r] and
x[2r+1], ¥ =0, 1, ..., (N/2) — 1, corresponding to even and odd values of
time, respectively.

B The N-point DFT of x[#] can be computed by properly combining the
(N/2)-point DETs of each subsequences.

B In turn, the same principle can be applied in the computation of the
(N/2)-point DFT of each subsequence, which can be reduced to DFTs
of size N/4.

This basic principle is repeated until only 2-point DFETs are involved.

B The final result is an FFT algorithm of complexity N2log,N complex
Anultiplication and Nlog,N complex additions..
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Radix-2 FFT

B Radix-2 rearranges the DF T equation into 2 parts having

Indices as

N -1 _Jr':',;{trz i = {[] _.2 :4 - J-""Iir — 2 }
X(k)=> x(n)e ~ n = {1,3.5.. N -1}

n=0

N N

51 _j2ak(2n) 7l _ j2ak(2n+1)
X(k)y=> x(2n)e ¥ +> x(2Zn+1)e N

n=0 n=0

N J1lxkn N j 2 xkn

5! TN _j2ak 37 TN
X(k)y=> x(2n)e * +e ¥ x(2n+1e ?

n=0 n=>0

X(k)=G(k)+W,}H (k)
B This Is called Decimation in time because the time
samples are rearranged in alternating groups
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Radix-2 FFT

B Radix-2 rearranges the DF T equation into 2 parts having

Indices as

N-1 _J2xkn n = {0.2.4,.. N - 2}
X(k)=> x(n)e ¥ n = {1,3,5,.. N -1}

n=0

N N

5 ! _j2sk(2m) 51 _ j2xk(2n+1)
X(k)=> x(2n)e Yoo+ > x(Zn+1)e N

n=10 n=0

N Jlmkn N J2akn

51! - j2xk 51 W

FI

u| =

+e M

X(k)=> x(2Zn)e

n=0
X(k)=G(k)+WyiH (k) —_
This is called Decimation in
samples are rearranged in &
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The mathematical simplification
reveal that all DFT freq: o/ps X(Kk)

can be computed as the sum of the
o/ps of two length N/2 DFTs, of even
& odd indexed discrete time samples
respectively, where the odd-indexed
short DFT is multiplied by a so called
Twiddle factor term.
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2-Points FFT

The 2-point FFT:
B Inthe case N=2, (1) specializes to,
X[k)=Glk]+H[kW,. k=01
B Since, W, =e’" =1 this can be further simplified to
X[0]=G|0]+ H[1]
X[1]=6{0]-H{1]

Main steps of DIT:

B Split the summation > in (1) into even }, ..., @nd odd }, .44 Parts as
(N/2)-point DF Ts.

B [fN/2 =2 stop; else, repeat the above steps for each of the
individual (N/2)-point DFT.
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“Butterfly” Signal Flow Graph

B |n general, the equations for FFT are awkward to write
mathematically, and therefore the algorithm is very often
represented as a “butterfly” based signal flow graph (SFG), the
butterfly being a simple SFG of the form:

/ Splitting node

/ summing node

> d

Multiplier ’\
b
\W,f.f

B The multiplieris a -::nmplex number and the input data, a and b, may
also be complex. One butterfly computation requires one complex
multiply and two complex additions (assuming data is complex).
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The 4-point FFT

Case N=4 = 22;
B Step—1:

X[k] = X101+ X[1W," + X[27, + X[3]7,”",
= (X[0]+ X272 )+ Wi (X 1]+ X[3W. )

B Step — 2: Using the property W.“ =W, we can write

X[k] = (X[0]+ X2, )+ Wi (X 1]+ X[3]W )
= G[k]+ W, H[k]

Glk]= DFT,{even samples}
H| k| = DFT,{odd samples}

Note that G[k] and H[k], are 2-periodic, i.e.

Gk +2]=G[K]. H[k+2]=H[k]

B Step — 3: Since N/2 = 2, we simply stop; that is, the 2-point DFTs
G[k] and H[k] cannot be further simplified via DIT.

Dr. Ali J. Abboud 62 Dept. of Computer and Software Engineering



The 4-point FFT

Interpretation:

B The 4-point DFT can be computed by properly combining the 2-point DF T's
of the even and odd samples, i.e. G[k] and H[k], respectively:

X[k]=Glk|+W,H[k]. k=0,12.3

B Since G[k] and HIk] are 2-periodic, they only need to be computed for k=0,
: X, [k] = G[0]+ W H[0]
X [k]=G[1]+ W, H[1]
X, [k]=G[2]+W; H[2]= G[0]+ W, H[0]

F &)

X,[k]=G[3]+ W, H[0]=G[1]+W, H[1]
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Radix-4 FFT

B The radix-4 decimation in time algorithm rearranges of every
fourth discrete time index , = 0.4.8,.. ¥ - 2}
n=1{,5.9,.. N — 3}
n={2,610 ,.N — 4}
n={3,7,11 ... N — 4}
B This works out only when the FFT length is multiple of four.

_ j2akn
X (k)= z x(me V¥
=0

v, _ N_ _

T jlak(4m) T  jlak(4n+l)
X(k)zz x(4dn)e V¥ +Z x(dn+1)e o

n=0 n=0

N y

—-1 j2ak(4n+2) 7! _ jlak(4n+3)

4 _
+ > x(4n+2)e v + > x(4n+3)e v
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Radix-4 FFT

X(k)=DFT, [x(4n)]+ W DFT  [x(4n+1)]

4 4

+ W DFT, [x(4n+2)]+ W, DFT , [x(4n+3)]

B This is called Decimation in time becatse time
samples are rearranged in alternating groups
and a radix-4 algorithm because there are four
groups.
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Split Radix FFT

B By mixing radix-2 & radix-4 computations
appropriately, an algorithm of lower complexity
than other can be derived.

N1 JLan
X(k) ZZJ?(H)E N
e
.-"w"_l ;u,,-'_l N—l
2 2AQ2n) g Pl g DA3)

- —_——

XM=Y e ¥ +YxUntle ¥ +Y (e ¥

X(k) = DFTy[x(2n)]+ Wy DFT [x(4n+1)]+ Wy DF I [x(4n +3)]

4 4
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End of Chapter
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