State-space methods for
control system design

8.1 The state-space-approach

The classical control system design techniques discussed in Chapters 5-7 are gener-
ally only applicable to

(a) Single Input, Single Output (SISO) systems
(b) Systems that are linear (or can be linearized) and are time invariant (have
parameters that do not vary with time).

The state-space approach is a generalized time-domain method for modelling, ana-
lysing and designing a wide range of control systems and is particularly well suited to
digital computational techniques. The approach can deal with

(a) Multiple Input, Multiple Output (MIMO) systems, or multivariable systems
(b) Non-linear and time-variant systems
(c) Alternative controller design approaches.

8.1.1 The concept of state

The state of a system may be defined as: ‘The set of variables (called the state
variables) which at some initial time ¢,, together with the input variables completely
determine the behaviour of the system for time 7 > ¢ .

The state variables are the smallest number of states that are required to describe
the dynamic nature of the system, and it is not a necessary constraint that they are
measurable. The manner in which the state variables change as a function of time
may be thought of as a trajectory in n dimensional space, called the state-space.
Two-dimensional state-space is sometimes referred to as the phase-plane when one
state is the derivative of the other.
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8.1.2 The state vector differential equation

The state of a system is described by a set of first-order differential equations in terms
of the state variables (x|, X2, ..., x,) and input variables (u;, us, ..., u,) in the
general form

dxl

PTGl +apxy 4+ 4 aXy + briug 4 - - 4 bty

de

o, = Xt anxy 4k dXn + baruy + -+ bamtt (8.1)
dx,

W = anX] + a2 X2 + -+ UunXn + bnlul +- 4+ bnmum

The equations set (8.1) may be combined in matrix format. This results in the state
vector differential equation

X = AX + Bu (8.2)
Equation (8.2) is generally called the state equation(s), where lower-case boldface

represents vectors and upper-case boldface represents matrices. Thus

x is the n dimensional state vector

X1
X2
. (8.3)
Xn
u is the m dimensional input vector
uj
)
) (8.4)
um
A is the n x n system matrix
ayny dip ... Ay
a dx» ... dxy
(8.5)
ag1 4y ... dyy
B is the n x m control matrix
by bim
by ... b
_ " (8.6)

bnl <. bnm
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Fig. 8.1 Spring—mass—damper system and free-body diagram.

In general, the outputs (yy, y2, ..., ¥,) of a linear system can be related to the state
variables and the input variables

y = Cx + Du (8.7)
Equation (8.7) is called the output equation(s).
Example 8.1

Write down the state equation and output equation for the spring-mass—damper
system shown in Figure 8.1(a).

Solution
State variables

X1 =Y (8.8)
d .
Xy = d—J; = X1 (89)
Input variable
u= P(1) (8.10)

Now

Z Fy =my
From Figure 8.1(b)
P(1) — Ky — Cy = my
or

d2y K )
@=—%y—gy+aP(z) (8.11)



State-space methods for control system design 235

From equations (8.9), (8.10) and (8.11) the set of first-order differential equations are

)'Cl = X2
. C 1 (8.12)
Xp = ——X| ——X2+—Uu

m m m

and the state equations become

5 0 1 . 0
1] 1
HE SRS 8.13)
m m m
From equation (8.8) the output equation is

y=1[1 O][xl] (8.14)
X2
State variables are not unique, and may be selected to suit the problem being studied.

Example 8.2
For the RCL network shown in Figure 8.2, write down the state equations when

(a) the state variables are v,(7) and v,
(b) the state variables are v,(7) and i(z).

Solution
@ x1 = (1)
i : (8.15)
Xy = V) = X
From equation (2.37)
d2V2 dV2
LC——+ RC— = 1
C R+ RC 4 = () (8.16)
From equations (8.15) and (8.16) the set of first-order differential equations are
Xl = X2
1 R 1
X2 = ——=X] ——C)C7 +—u (8.17)

B LC LC = LC

Fig. 8.2 RCL network.
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and the state equations are

gL e[ e

LC L LC
(b) X1 =a(l) (8.19)
Xy = i(?) .
From equations (2.34) and (2.35)
L% = —(t) — Ri(t) + v1(?) (8.20)
dvy .
C =i (8.21)

Equations (8.20) and (8.21) are both first-order differential equations, and can be
written in the form

) 1
X ==X
,l ¢ 12 R 1 (8.22)
Xy = —Z)Cl —Z.Xz —I—Zu
giving the state equations
% 0 1 . 0
L.Cz]: 1 R {xﬂ+ 1 |u (8.23)
L L L

Example 8.3
For the 2 mass system shown in Figure 8.3, find the state and output equation when
the state variables are the position and velocity of each mass.

Solution
State variables

XL=yr X2 =
X3=)2 X4=D0
System outputs
Vi, )2
System inputs
u= P(1) (8.24)

For mass m
Z F, =mj,
Ko(y2 —y1) = Kiyi + P(1) — Ciyy = mijiy (8.25)
For mass m;

Z Fy =myj,

— Ky(y2 — 1) = majia (8.26)
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Fig. 8.3 Two-mass system and free-body diagrams.

From (8.24), (8.25) and (8.26), the four first-order differential equations are

X] = X2
) Ki K Ci K 1
Y=\ T T ) T +m—x3 —I—m—u
ny oy 1 1 1 (8.27)
X3 = X4
K, K>
X4 =—=—X1 ——X3
mo mo
Hence the state equations are
i 0 1 0 07
X1 _(Kl +K2> N O NS (1)
X | mi mp m X2 —
ol = 0 0o 0 1||lwml|T g u o (8.28)
X K K
x“ 22 0 =2 L™ 0
L niy n i
and the output equations are
X1
yil (1 0 0 0]|x2
[y2:| o |:0 01 0 X3 (8‘29)

X4



238 Advanced Control Engineering

Uls) . bptS" +. .+ bys+ by Y(s) >
St apq s et as+a,
Fig. 8.4 Generalized transfer function.
8.1.3 State equations from transfer functions
Consider the general differential equation
d"y d 'y dy d 'y du
W‘Fan_lw‘F"'+Cl]E+a()y:b,l_lw'i‘"“i‘b]a‘i‘bou (830)

Equation (8.30) can be represented by the transfer function shown in Figure 8.4.
Define a set of state variables such that

)2?1 = X2
562 = X3
(8.31)
Xn = —aQpX] — a1 Xy — - — Uy 1 Xp+ U
and an output equation
y= boxy +bixy + -+ + b1 x, (832)
Then the state equation is
[ X1 ] 0 1 0 ... 0 7[ x ] 0
X» 0 0 1 ... 0 X2 0
: = : : + | |u (8.33)
xn—l 0 0 0 N 1 xn—l 0
L Xn ] —a —d —dy ... —dy—1 | Xn ] 1

The state-space representation in equation (8.33) is called the controllable canonical
form and the output equation is

X1
X2

y=1[bo b1 by ... by ]| (8.34)

Example 8.4 (See also Appendix 1, examp84.m)
Find the state and output equations for

4

L=
343524 65+2

U
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5C1 0 1 0- X1 0
Hl=10 0 1 ||x|+]0]u (8.35)
3 2 —6 -3]|x 1

Solution
State equation

Output equation

o
y=[4 0 0]|x (8.36)
_x3
Example 8.5
Find the state and output equations for
X(s)— 55+ 7s + 4
U™ 834352+ 65 +2

Solution
The state equation is the same as (8.35). The output equation is

X1
y=I[4 T 5]|x (8.37)

X3

8.2 Solution of the state vector differential equation

Consider the first-order differential equation

dx = ax(t) + bu(?) (8.38)
dt
where x(7) and u(z) are scalar functions of time. Take Laplace transforms
sX(s) — x(0) = aX(s) + bU(s) (8.39)
where x(0) is the initial condition. From equation (8.39)
x =0 4 b g (8.40)
(s—a) (s—a)
Inverse transform
t
x(1) = e“x(0) + / ‘D pu(r)dr (8.41)
0

where the integral term in equation (8.41) is the convolution integral and 7 is a
dummy time variable. Note that
202 dk i

at ast
€ —1+at+7+~--+7 (8.42)
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Consider now the state vector differential equation
X = Ax + Bu (8.43)
Taking Laplace transforms
sX(s) — x(0) = AX(s) + BU(s) (8.44)
(sT — A)X(s) = x(0) + BU(s)
Pre-multiplying by (sI — A)~!

X(s) = (sI — A)"'x(0) + (sT — A)"'BU(s) (8.45)

Inverse transform
t
x(7) = eMx(0) + / eATDBU(T)dr (8.46)
0
if the initial time is 7y, then

t
x(f) = eAU=0x(0) + / AT Bu(r)dr (8.47)

o

The exponential matrix e’ in equation (8.46) is called the state-transition matrix ®(f)
and represents the natural response of the system. Hence

®(s) = (sI — A) ! (8.48)
D) =27 's1—A) " =M (8.49)
Alternatively
AZ 2 Ak k
@) =1+ Al + 2,[ +'”+_k't (8.50)

Hence equation (8.46) can be written
t
x(7) = D(1)x(0) + / O(t — 7)Bu(r)dr (8.51)
0

In equation (8.51) the first term represents the response to a set of initial conditions,
whilst the integral term represents the response to a forcing function.

Characteristic equation

Using a state variable representation of a system, the characteristic equation is given
by

5T — A)| =0 (8.52)
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8.2.1 Transient solution from a set of initial conditions

Example 8.6
For the spring—mass—damper system given in Example 8.1, Figure 8.1, the state
equations are shown in equation (8.13)

. 0 1 0
HE [K ] [ng]u .
m m m

Given: m = l kg, C=3Ns/m, K =2N/m, u(¢) = 0. Evaluate,

(a) the characteristic equation, its roots, w, and ¢

(b) the transition matrices @(s) and ¢(7)

(c) the transient response of the state variables from the set of initial conditions
»(0) = 1.0,
»(0) =0

Solution
Since x; = y and x; = p, then x1(0) = 1.0, x,(0) = 0.
Inserting values of system parameters into equation (8.53) gives

=15 S

s 0 0 1 s -1
(a) (sI—A):{O s}_[—z _3}:{2 (S+3)] (8.54)

From equation (8.52), the characteristic equation is
IST—A)| =s(s+3)—(-2)=5+35+2=0 (8.55)
Roots of characteristic equation
s=—1,-2 (8.56)

Compare equation (8.55) with the denominator of the standard form in equation
(3.43)

w2=2 ie wy=l4ldrad/s

. (8.57)
2(wy, =3 1e (=1.061
(b) The inverse of any matrix A (see equation A2.17) is
Adjoint A
-1 _
A = T detA (8.58)

From equation (8.48)
®(s) = (sT — A)~!
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Using the standard matrix operations given in Appendix 2, equation (A2.12)

(s+3) ﬂ

Minors of ®(s) = [ 1 P

Co-factors of ®(s) = [(S "1‘ 3) _32}

The Adjoint matrix is the transpose of the Co-factor matrix

mm&mpﬁﬁ“} (8.59)
Hence, from equations (8.58) and (8.48)
(s+3) 1
O(s) — (s+ 12(2s+2) (s + l)s(s+2) (8.60)

+Ds+2) (s+Ds+2)
Using partial fraction expansions

< 21 > < 1 >
B(s) = s+1 s+4+2 s+1 s+2 (8.61)
) 1 1 . 2
s+1 s+2 s+1 542
Inverse transform equation (8.61)
B (ze—t _ e—2t) (e—t _ e—2t)
q)(t) - [_2(e—t _ e—2t) (_e—t 4 2e—21) (862)

Note that the exponential indices are the roots of the characteristic equation (8.56).

(c) From equation (8.51), the transient response is given by

x(1) = ®(1)x(0) (8.63)

x| | Qe - e_zl) (e — e—2t) 1
[X;} B |:_2(e_t — e_2f) (_e—f + 2e—2t)] |:0:| (864)
xi(f) = e~ — e
x(f) = =2 —e?)

Hence

(8.65)

The time response of the state variables (i.e. position and velocity) together with the
state trajectory is given in Figure 8.5.

Example 8.7
For the spring—mass—damper system given in Example 8.6, evaluate the transient
response of the state variables to a unit step input using

(a) The convolution integral
(b) Inverse Laplace transforms

Assume zero initial conditions.
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Xo(t)

(@) (b)
Fig. 8.5 State variable time response and state trajectory for Example 8.4.

Solution
(a) From equation (8.51)

1 0
_ 0 out—71) on(t—1)
X0 =20 [0] + Lbzi(f ) el - ﬂ] H undr
m
Given that u(f) = 1 and 1/m = 1, equation (8.66) reduces to

t
P12t —7)
x(1) = dr
@ /o [¢22(f— 7)
Inserting values from equation (8.62)
z —(t—7) _ a—2(1—7)
e e
x(1) = /0 |:e—(l—7') 4 2e=20-7) } dr
Integrating
e—(t=7) _ %6—2(1—7) T
x(1) =
e—(l—T) _|_e—2(t—7') |
Inserting integration limits (7 = ¢ and 7 = 0)
x| |3—e +%e_2t_
X2 —t -2t

c —¢C

Xi(f)

(8.66)

(8.67)

(8.68)

(8.69)

(b) An alternative method is to inverse transform from an s-domain expression.

Equation (8.45) may be written
X(s) = D(5)x(0) + D(s)BU(s)

(8.70)
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.0 e Xg(t)

0.5
1.0 xi(t)

Xg(t)

(@) (b)

Fig. 8.6 State variable step response and state trajectory for Example 8.5.

Hence from equation (8.61)

<2 1 > < L >
X(s):(IJ(s)[g]+ +1 s+2 s+1 s—|2—2

S
1 1 ~1
_2(s+1_s+2> <S+l+s+2>

_1 1 {L}
X(s) = s(s +_11 2 s(52+ 2) (8.72)

o+ D) sG+2)

ml 8.71)
S

Simplifying

Inverse transform

a1 a2t
x(f) = [(1 e —gll—e )] (8.73)
—(1—e )+ (1—e?)
which gives
x I et yle
[ 1] = [2 2 ] (8.74)
X2 e—t_e—Zt

Equation (8.74) is the same as equation (8.69).
The step response of the state variables, together with the state trajectory, is shown
in Figure 8.6.

8.3 Discrete-time solution of the state vector
differential equation

The discrete-time solution of the state equation may be considered to be the vector
equivalent of the scalar difference equation method developed from a z-transform
approach in Chapter 7.



