multiplexers Implementation

Х3	X2	X1	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- 1. Put X3 at level 1
- 2. Put X2 at level 2
- 3. Put X1 at level 3 o\p

Example 2 Input LUT

\mathbf{x}_1	\mathbf{x}_2	f
0	0	1
0	1	0
1	0	0
1	1	1

 $f = x_1'x_2' + x_1x_2$, or using Shannon's expansion:

$$f = x_1'(x_2') + x_1(x_2)$$

= $x_1'(x_2'(1) + x_2(0)) + x_1(x_2'(0) + x_2(1))$

Implementation LUT with 3 input

5/4/2017 47

Q1: you are asked to program an FPGA, whose LUTs and inter-connection wires are shown in **Figure below.** The function to be implemented is f = f1 _ f2, where f1 = a + b and f2 = a + c. LUT 1 should implement f1. LUT 2 should implement f2 and LUT 3 should implement f1-f2. The horizontally and vertically placed interconnection wires are fabricated in different planes. In order to depict a connection between these wires at a cross-point, place a cross-mark (X). The inputs a; b; c and the output f have already been connected to the "input-output pads

5/4/2017