Data Transfer Technique
polling:
Although the meaning of the data transmitted by the various process, operator and
computer peripherals differs, there are many common features which relate to transfer of
data from the interface to the computer.
A characteristic of most interface devices 1s that they operate synchronously with respect
to the computer and that they operate at much lower speeds. This difference in speed
would severely limit the speed of operation of the computer if it directly controlled the
device; however, for maximum flexibility of operation program control is desirable.
Operation in this way 1s known as ' programmed transfer ' and involves the use of the
CPU. The alternative 1s direct memory access "DMA".
A major problem in data transfer is timing. It may be thought that under programmed
transfer, the computer can read or write at any time to a device, 1.e. can make an
unconditional transfer. For some process output devices, (e.g. switches & indication
lights) these would be connected to a digital output interface or for D/A convector,
unconditional transfer is possible; they are always ready to receive data.
For other output devices; (e.g. printer & communications channels), which are not fast
enough to keep up with are computer but must accept a sequence of data items without
missing any item, unconditional transfer cannot be used.
The computer must always be sure that the device 1s ready to accept the next item of data,
hence either a timing loop to synchronize the computer to the external device or

'conditional transfer' has to be used.

1. conditional wait

A simple example of conditional transfer is show bellow. Assuming that the data is being
transferred to printer which operates at 40 characters/second, the computer will find that
the device 1s ready ones every 25 ms. The three instruction involved in performing the test
will take approximate 5 u sec (the actual time will depend on the speed of the processor),
thus the condition test will be carried out about 5000 times for each character transmitted.
The computer will spend 99.98% of its time 1n checking to see if the device 1s ready and
only 0.02% of that time doing useful work.

21

TEST : IN A, (STATUS) _
BITO, A B J_

JR Z, TEST repeat until A is zero [Tl‘n R DEICK l
OUT DATA, A ey

NO
—— READY?

IRANSEHER 1@
VIO

'

i Conditional ttansfer (hasy wait),

2. Conditional delay loop:
As an alternative to providing, on the interface, a status line which can be tested by the
computer, a timing loop generated in the computer by loading a register and then

decrementing it a specified number of times can be used, e.g. :

LD B.25 . load register B with time delay
Loop: DEC B , decrement B
JR NZ,Loop . repeatuntil B is zero

To ensure that no transfer is made before the peripheral 1s ready, the time delay must be
slightly greater than maximum delay expected in the peripheral; thus in term of use the
CPU this method 1s even more inefficient than the use of conditional wait. It does slightly

simplify and reduce the cost of the interface.

3. Continues method (periodic checks):

An alternative arrangement for conditional transfer, which allows the computer to continue
doing useful work if the device busy.

In this method a check 1s made to see if the device is ready: if it is ready then the transfer
1s made; otherwise the computer continues with other work and returns at some later time

to check if the device 1s ready.

The techmque avoids the inefficiency of waiting in a loop for a device to become ready,

but presents the programmer with the difficult task of arranging the software such that all

devices are checked at frequent intervals.
CHECK DEVICH
l STATLS]

YIS

RI-Ay
NCO)

DIEVIC]
—ard J

'

CONTINULE
PROCESSING

FRANSEFER 1O]

Fig. Condihonal transler,

Interrupts:

An interrupts 1s a mechanism by which the flow of the program can be temporarly
stopped to allow a special piece of software — an Interrupt Service Routine, or Interrupt

Handler - to run. When this routines has finished, the program was temporarily

suspended 1s resumed. The process 1s 1llustrated bellow:

M prograom
instructions
%

Inlcnup!
stpnal

luterrum

——

SCrvICe
recerved

routine

Fiy. Interrupt-initiated prograam conbrol transler.

Interrupts are essential for the correct operation of most real-time computer systems; in

addition to providing a solution to the conditional wait problem they are used for:

1.

Real-time clock: The external hardware provides a signal at regulated spaced
intervals of time; the interrupt service routine (ISR) counts the signal and keeps a
clock.

Alarm input : Various sensors can be used to provide a change in a logic level in
the event of an alarm.

Manual override: Use of an interrupt can allow external control of system to allow
for maintenance and repair.

Hardware failure indication: Failure of external hardware or of interface units can
be signalled to the processor through the use of an interrupt.

Debugging aids: Interrupt are frequently used to insert breakpoints or traces in the
program during program testing.

Operating system: interrupts are used to force entry to the operating system before
the end of a time slice.

Power failure warning: It is simple to include in the computer system a circuit that
detects very quickly the loss of power in the system and provides a few milliseconds

warning before the loss 1s such that the system stops working.

Saving and restoring registers

Since an interrupt can occur at any point in a program precautions have to be taken to

prevent information which is being held temporally in the CPU registers from the being

overwritten.

All CPUs automatically save the contents of the program counter. This 1s vital: if the

contents are not saved then a return to the point in the program at which the interrupt

occurred could not be made.

2. Interruptinput mechanisms

A simple form of interrupt input is shown below. In between each instruction the CPU

checks the IRQ line. If it 1s active, an interrupt 1s present and ISR 1s entered: if it 1s not

active the next instruction is fetched and cycle repeats.

24

Note that an instruction involves more than one CPU clock cycle and that the interrupt line
1s checked only between instructions. Because several clock cycles may elapse between
successive checks of the interrupt line, the interrupt signal must be latched and only

cleared when the interrupt 1s acknowledged.

]

INSTRUCTION
FETCH DECODL
EXECUTL
L

N CLOCK
CYCLL

C INSTRUICTION
COMYLETH

NENT 1
INSTRUCTION

|
J

NO /
- IRO

\\\\:CThT

YES

r——.—__._ —— —— — | —
.

INTERRUPT
SERVICE
ROUTINE

Fig. Fiowchart of basic interrupt mechanism.,

The use of polling with either busy wait or periodic checks on device status provides the
simplest method in term of the programming requirements and in the testing of programs.
Interrupt driven systems are much more difficult to debug since many of errors may be
time dependent. At high data transfer rates the use of interrupts is inefficient because of
the overheads involved in the interrupt service routine (saving and restoring the

environment), hence polling 1s often used .

Direct memory access (DMA):

There are three modes for used DMA

1- Burst mode
In burst mode the DM A controller takes over the data highways of the computer and locks
out the CPU for the period of time necessary to transfer. The use of burst mode can
seriously affect the response time of a real time system to an external event and because of

their mode not be acceptable.

2- Distributed mode

In this mode the DMA controller takes occasional machine cycle from the CPU’s
control and uses each cycle to transfer a byte of information to or from fast memory to the
backing memory. In real-time system, if software-timing loops are used then the loss of

machine cycle will affect the time taken to complete the loop.

3- Cycle-stealing method
In this mode transfer data only during cycles when the CPU is not using the data bus.
Therefore the program proceeds at the normal rate completely unaffected by DMA data

transfers. This 1s, however, the slowest method of transfer to backing store.

Communications:

The use of distributed computer systems implies the need for communication. As the
distance between the source and receiver increases it becomes more difficult, when using
analog techniques, to obtain a high signal to noise ratio; this i1s particularly so in an
industrial environment where there may be numerous sources of interference. Analog
systems are therefore generally limited to short distance.

The use of parallel digital transmission provides high data transfer rates but 1s expensive
in term of cabling and interface circuitry and again is normally only used over short
distances (or when very high rates of transfer are required).

Serial communication techniques can be characterized in several way
1- Mode
a) Asynchronous

b) Synchronous

20

2- Quantity

a) Character-by-character
b) Block

3- Distance

a) Local

b) Remote 1.e. wide area
4- Code

a) ASCII

b) Other

Asynchronous and synchronous transmission techniques:

Asynchronous transmission implies then both the transmitter and receiver circuits use
their own local clock signals to gate data on and off the data transmission line.

In order that the data can be interpreted unambiguously there must be some agreement
between the transmitter and receiver clock signals. This agreement is forced by the
transmitter periodically sending synchronization information down the transmission line.
The most common form of asynchronous transmission i1s the character-by-character
system which 1s frequently used for connecting terminals to computer equipment and was
introduced for transmission of information over telegraph lines.

It 1s sometimes called the stop-start system. In this each character which 1s transmitted 1s

preceded by 'start' bit and followed by one or by two 'stop’ bits (see the figure below).

wl ool o]

Clock P‘L
Datz | | '

Stop ,

g

Fig. Asynchronous transmission.

27

The start bit 1s used by receiver to synchronize its clock with the incoming data; the signal
must remain synchronized for the time taken to receive the following eight data bits and
two stop bits.

The advantage of the stop-start system is that, particularly at the lower transmission rates,
the frequencies of the clock signal generators do not have to be closely matched.

The disadvantage of the system is that for each character transmitted (8bits) three or four
extra bits information have also to be transmitted, 1.e. the overall information ratio i1s not
very high.

The range of transmission speeds used for this system i1s from (75) bits/sec to (9600)

bit/sec. The standard speed are (75,110 ,300 ,600 ,1200, 1800, 2400, 4800, 9600)b/s.

To overcome the problem of transmitting redundant bits, synchronous systems designed to
transmit large volumes of data over short period of time, such as computer-to-computer
systems, use block synchronous transmission techniques. Here, the characters are grouped
into records, e.g., blocks of 80 characters, and each record 1is preceded by a
synchronization signal and terminated with a stop sequence .
The synchronization sequence 1s used to enable the receiver to synchronize with the
transmit clock.
In order to establish effective communication it 1s necessary to transmit more than just a
synchronization signal — the additional information 1s called the protocol.
A simple protocol 1s:-

1. At the start of a transmission, bit synchronization is achieved by the transmitter

sending out a sequence of Os and 1s.

9

. Followed by the ASCII code "SYN". The transmitter will continue to send the
"SYN" code until receiver responds by sending back the code "ACK" or a preset
time elapses (device time out).

3. If time out occurs, the transmitter sends the bit pattern of 0s and 1s again.

4. Once contact has been established the transmitter will send out "SYN" characters

during any 1dle period and the receiver will respond by sending back "ACK".

5. The line will only be completely idle when the transmitter has send "EOT" (end of

transmission) character.

The text 1s broken up into blocks and each block 1s preceded by an "EXT" (start of text)

character and ended by an "ETX" (end of text).

| | J | | | |
' EOT | BCC | ETX TEXT ‘ STX | SYN l BCC | ET.\'(TEXT STX | SYN | SYN| 01010101
] |

o = — Yot L S -
= = T z < W ¢
z >~ s = R -5 z
= e > Y, e = =
z > - <4 & =z
- - v -
73 g =
Z. = =

Fig. Synchronous transmissions

Following the ETX will be an integrity check on the data, typically this will take the form

of a parity check.

