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Fig. 7.15 Unit step response for Example 7.4.
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Hence there is no steady-state error.

7.6.1 Mapping from the s-plane into the z-plane

Just as transient analysis of continuous systems may be undertaken in the s-plane,
stability and transient analysis on discrete systems may be conducted in the z-plane.
It is possible to map from the s to the z-plane using the relationship

zi=e7 (7.61)
now
s=o+jw
therefore
z = I — 7T (ysing the positive jw value) (7.62)
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Fig. 7.16 Mapping from the s to the z-plane.

If T = |z| and T = 27/w, equation (7.62) can be written
z = |z|eiPmilus) (7.63)

where w; is the sampling frequency.

Equation (7.63) results in a polar diagram in the z-plane as shown in Figure 7.16.
Figure 7.17 shows mapping of lines of constant o (i.e. constant settling time) from the
s to the z-plane. From Figure 7.17 it can be seen that the left-hand side (stable) of the
s-plane corresponds to a region within a circle of unity radius (the unit circle) in the z-
plane.

Figure 7.18 shows mapping of lines of constant w (i.e. constant transient fre-
quency) from the s to the z-plane.
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Fig. 7.17 Mapping constant & from s to z-plane.
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Fig. 7.18 Mapping constant w from s to z-plane.
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Fig. 7.19 Corresponding pole locations on both s and z-planes.

Figure 7.19 shows corresponding pole locations on both the s-plane and z-plane.

7.6.2 The Jury stability test

In the same way that the Routh-Hurwitz criterion offers a simple method of
determining the stability of continuous systems, the Jury (1958) stability test is
employed in a similar manner to assess the stability of discrete systems.

Consider the characteristic equation of a sampled-data system

Q(:) == (l":n + (ln_]Z"_l + AR + (ll: + any = 0

(7.64)
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Table 7.4 Jury’s array
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The array for the Jury stability test is given in Table 7.4 where

ay  dp-—k
b =
ady ay
bn—l—k
Ce = (7.65)
bn~l bk
Cn—2—k
di =
Cn--2 Ck

The necessary and sufficient conditions for the polynomial Q(z) to have no roots

outside or on the unit circle are

Condition 1
Condition 2
Condition 3

Condition n

o(l) =0
(=D)"Q(=1) >0
lag| < a,

ol > |Bu-1l

(7.66)
lco| > |cn-2]

lmg| = |m;|

Example 7.5 (See also Appendix 1, examp75.m)
For the system given in Figure 7.14 (i.e. Example 7.4) find the value of the digital
compensator gain K to make the system just unstable. For Example 7.4, the char-

acteristic equation is

1 4+ G(z) =0 (7.67)

In Example 7.4, the solution was found assuming that K = 1. Therefore, using
equation (7.53), the characteristic equation is

K(0.092z + 0.066)

1 +

22— 1.368z + 0.368)

0 (7.68)
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or
0(z) = 22 + (0.092K — 1.368)z + (0.368 + 0.066K) = 0 (7.69)

The first row of Jury’s array is

-

| -0 X | vl

(0.368 + 0.066K) (0.092K — 1.368) 1

(7.70)

Condition 1: Q(1) > 0
From equation (7.69)

O(1) = {1 + (0.092K — 1.368) + (0.368 + 0.066K)} > 0 (7.71)
From equation (7.71), O(1) = 0 if K > 0.

Condition 2 (—1)"Q(—1) >0
From equation (7.69), when n = 2

(=1 0(=1) = {1 — (0.092K — 1.368) + (0.368 + 0.066K)} = 0 (7.72)
Equation (7.72) simplifies to give
2.736 — 0.026K = 0

or

2.736
< 0.026

K = 105.23 (7.73)

Fig. 7.20 Root locus diagram for Example 7.4.
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Condition 3: |ay| < a>
10.368 + 0.066K| < 1 (7.74)
For marginal stability

0.368 + 0.066K = 1

_ 3 (7.75)
K — 1 —0.368 _ 958
0.066

Hence the system is marginally stable when K = 9.58 and 105.23 (see also Example
7.6 and Figure 7.20).

7.63 Root locus analysis in the z-plane

As with the continuous systems described in Chapter 5, the root locus of a discrete
system is a plot of the locus of the roots of the characteristic equation

| + GH(z) =0 (7.76)

in the z-plane as a function of the open-loop gain constant K. The closed-loop system
will remain stable providing the loci remain within the unit circle.

7.6.4 Root locus construction rules

These are similar to those given in section 5.3.4 for continuous systems.

1. Starting points (K = 0): The root loci start at the open-loop poles.

2. Termination points (K = oc): The root loci terminate at the open-loop zeros when
they exist, otherwise at oc.

3. Number of distinct root loci: This is equal to the order of the characteristic
equation.

4. Symmetry of root loci: The root loci are symmetrical about the real axis.

Root locus locations on real axis: A point on the real axis is part of the loci if the

sum of the open-loop poles and zeros to the right of the point concerned is odd.

6. Breakaway points: The points at which a locus breaks away from the real axis can
be found by obtaining the roots of the equation

a

| —
E{C:]{(..»)}—O

7. Unit circle crossover: This can be obtained by determining the value of K for
marginal stability using the Jury test, and substituting it in the characteristic
equation (7.76).

Example 7.6 (See also Appendix 1, examp76.m)
Sketch the root locus diagram for Example 7.4, shown in Figure 7.14. Determine the
breakaway points, the value of K for marginal stability and the unit circle crossover.



