

Fig. 7.6 Construction of a continuous signal using a zero-order hold.

## 7.4 The z-transform

The z-transform is the principal analytical tool for single-input-single-output discrete-time systems, and is analogous to the Laplace transform for continuous systems.

Conceptually, the symbol z can be associated with discrete time shifting in a difference equation in the same way that s can be associated with differentiation in a differential equation.

Taking Laplace transforms of equation (7.1), which is the ideal sampled signal, gives

$$F^*(s) = \mathcal{L}[f^*(t)] = \sum_{k=0}^{\infty} f(kT) e^{-kTs}$$
 (7.3)

or

$$F^*(s) = \sum_{k=0}^{\infty} f(kT) (e^{sT})^{-k}$$
 (7.4)

Define z as

$$z = e^{sT} (7.5)$$

then

$$F(z) = \sum_{k=0}^{\infty} f(kT)z^{-k} = Z[f(t)]$$
 (7.6)

In 'long-hand' form equation (7.6) is written as

$$F(z) = f(0) + f(T)z^{-1} + f(2T)z^{-2} + \dots + f(kT)z^{-k}$$
(7.7)

#### Example 7.1

Find the z-transform of the unit step function f(t) = 1.



Fig. 7.7 z-Transform of a sampled unit step function.

Solution

From equations (7.6) and (7.7)

$$Z[1(t)] = \sum_{k=0}^{\infty} 1(kT)z^{-k}$$
(7.8)

or

$$F(z) = 1 + z^{-1} + z^{-2} + \ldots + z^{-k}$$
(7.9)

Figure 7.7 shows a graphical representation of equation (7.9).

Equation (7.9) can be written in 'closed form' as

$$Z[1(t)] = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$
(7.10)

Equations (7.9) and (7.10) can be shown to be the same by long division

$$z - 1 ) z = 0$$

$$z - 1$$

$$z - 1$$

$$0 + 1$$

$$1 - z^{-1}$$

$$0 + z^{-1}$$

$$0 + z^{-1}$$

$$z^{-1} - z^{-2}$$

$$(7.11)$$

Table 7.1 gives Laplace and z-transforms of common functions. z-transform Theorems:

(a) Linearity

$$Z[f_1(t) \pm f_2(t)] = F_1(z) \pm F_2(z) \tag{7.12}$$

Table 7.1 Common Laplace and z-transforms

| 91 | f(t) or $f(kT)$                 | F(s)                               | F(z)                                                                                   |
|----|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------|
| 1  | $\delta(t)$                     | 1                                  | 1                                                                                      |
| 2  | $\delta(t-kT)$                  | $e^{-kTs}$                         | $z^{-k}$                                                                               |
| 3  | 1( <i>t</i> )                   | $\frac{1}{s}$                      | $\frac{z}{z-1}$                                                                        |
| 4  | t                               | $\frac{1}{s^2}$                    | $\frac{Tz}{(z-1)^2}$                                                                   |
| 5  | $e^{-at}$                       | $\frac{1}{(s+a)}$                  | $\frac{z}{z - e^{-aT}}$                                                                |
| 6  | $1 - e^{-at}$                   | $\frac{a}{s(s+a)}$                 | $\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$                                          |
| 7  | $\frac{1}{a}(at - 1 + e^{-at})$ | $\frac{a}{s^2(s+a)}$               | $\frac{z\{(aT - 1 + e^{-aT})z + (1 - e^{-aT} - aTe^{-aT})\}}{a(z - 1)^2(z - e^{-aT})}$ |
| 8  | $\sin \omega t$                 | $\frac{\omega}{s^2 + \omega^2}$    | $\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$                                       |
| 9  | $\cos \omega t$                 | $\frac{s}{s^2 + \omega^2}$         | $\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$                                       |
| 10 | $e^{-at}\sin \omega t$          | $\frac{\omega}{(s+a)^2+\omega^2}$  | $ze^{-aT}\sin\omega T$ $z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}$                        |
| 11 | $e^{-at}\cos\omega t$           | $\frac{(s+a)}{(s+a)^2 + \omega^2}$ | $\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$            |

(b) Initial Value Theorem

$$f(0) = \lim_{z \to \infty} F(z) \tag{7.13}$$

(c) Final Value Theorem

$$f(\infty) = \lim_{z \to 1} \left[ \left( \frac{z-1}{z} \right) F(z) \right]$$
 (7.14)

#### 7.4.1 Inverse transformation

The discrete time response can be found using a number of methods.

## (a) Infinite power series method

Example 7.2

A sampled-data system has a transfer function

$$G(s) = \frac{1}{s+1}$$

If the sampling time is one second and the system is subject to a unit step input function, determine the discrete time response. (N.B. normally, a zero-order hold would be included, but, in the interest of simplicity, has been omitted.) Now

$$X_0(z) = G(z)X_i(z) \tag{7.15}$$

from Table 7.1

$$X_{o}(z) = \left(\frac{z}{z - e^{-T}}\right) \left(\frac{z}{z - 1}\right) \tag{7.16}$$

for T = 1 second

$$X_{o}(z) = \left(\frac{z}{z - 0.368}\right) \left(\frac{z}{z - 1}\right)$$

$$= \frac{z^{2}}{z^{2} - 1.368z + 0.368}$$
(7.17)

By long division

$$z^{2} - 1.368z + 0.368 ) z^{2} = 0 = 0$$

$$\frac{z^{2} - 1.368z + 0.368}{0 + 1.368z - 0.368}$$

$$0 + 1.368z - 1.871 + 0.503z^{-1}$$

$$0 + 1.503 - 0.503z^{-1}$$

$$1.503 - 2.056z^{-1} + 0.553z^{-2}$$

$$(7.18)$$

Thus

$$x_o(0) = 1$$
  
 $x_o(1) = 1.368$   
 $x_o(2) = 1.503$ 

#### (b) Difference equation method

Consider a system of the form

$$\frac{X_0}{X_1}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots}$$
(7.19)

Thus

$$(1 + a_1 z^{-1} + a_2 z^{-2} + \cdots) X_0(z) = (b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots) X_i(z)$$
 (7.20)

$$X_{o}(z) = (-a_{1}z^{-1} - a_{2}z^{-2} - \cdots)X_{o}(z) + (b_{0} + b_{1}z^{-1} + b_{2}z^{-2} + \cdots)X_{i}(z)$$
 (7.21)

Equation (7.21) can be expressed as a difference equation of the form

$$x_{o}(kT) = -a_{1}x_{o}(k-1)T - a_{2}x_{o}(k-2)T - \cdots + b_{0}x_{i}(kT) + b_{1}x_{i}(k-1)T + b_{2}x_{i}(k-2)T + \cdots$$
 (7.22)

In Example 7.2

$$\frac{X_o}{X_i}(s) = \frac{1}{1+s}$$

$$= \frac{z}{z - e^{-T}} = \frac{z}{z - 0.368}$$
(7.23)

Equation (7.23) can be written as

$$\frac{X_o}{X_i}(z) = \frac{1}{1 - 0.368z^{-1}} \tag{7.24}$$

Equation (7.24) is in the same form as equation (7.19). Hence

$$(1 - 0.368z^{-1})X_0(z) = X_i(z)$$

or

$$X_0(z) = 0.368z^{-1}X_0(z) + X_i(z)$$
 (7.25)

Equation (7.25) can be expressed as a difference equation

$$x_{o}(kT) = 0.368x_{o}(k-1)T + x_{i}(kT)$$
(7.26)

Assume that  $x_0(-1) = 0$  and  $x_i(kT) = 1$ , then from equation (7.26)

$$x_o(0) = 0 + 1 = 1, \quad k = 0$$
  
 $x_o(1) = (0.368 \times 1) + 1 = 1.368, \quad k = 1$   
 $x_o(2) = (0.368 \times 1.368) + 1 = 1.503, \quad k = 2$  etc.

These results are the same as with the power series method, but difference equations are more suited to digital computation.

# 7.4.2 The pulse transfer function

Consider the block diagrams shown in Figure 7.8. In Figure 7.8(a)  $U^*(s)$  is a sampled input to G(s) which gives a continuous output  $X_o(s)$ , which when sampled by a



Fig. 7.8 Relationship between G(s) and G(z).