7.3 Ideal sampling

An ideal sample $f^*(t)$ of a continuous signal f(t) is a series of zero width impulses spaced at sampling time T seconds apart as shown in Figure 7.4.

The sampled signal is represented by equation (7.1).

$$f^*(t) = \sum_{k=-\infty}^{\infty} f(kT)\delta(t - kT)$$
 (7.1)

where $\delta(t - kT)$ is the unit impulse function occurring at t = kT.

A sampler (i.e. an A/D converter) is represented by a switch symbol as shown in Figure 7.5. It is possible to reconstruct f(t) approximately from $f^*(t)$ by the use of a hold device, the most common of which is the zero-order hold (D/A converter) as shown in Figure 7.6. From Figure 7.6 it can be seen that a zero-order hold converts a series of impulses into a series of pulses of width T. Hence a unit impulse at time t is converted into a pulse of width T, which may be created by a positive unit step at time t, followed by a negative unit step at time (t - T), i.e. delayed by T.

The transfer function for a zero-order hold is

$$\mathcal{L}[f(t)] = \frac{1}{s} - \frac{1}{s} e^{-Ts}$$

$$G_{h}(s) = \frac{1 - e^{-Ts}}{s}$$
(7.2)

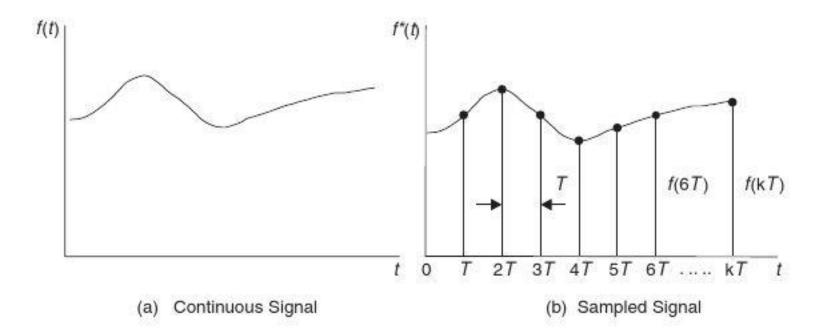


Fig. 7.4 The sampling process.

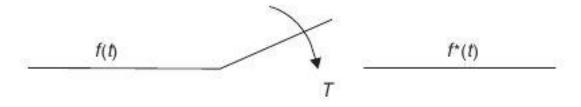


Fig. 7.5 A sampler.

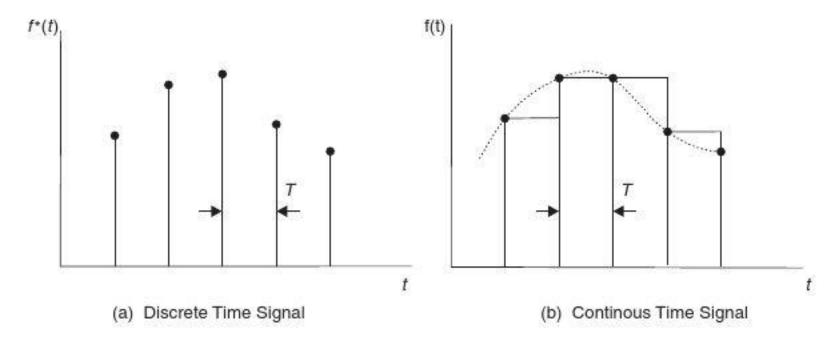


Fig. 7.6 Construction of a continuous signal using a zero-order hold.

7.4 The z-transform

The z-transform is the principal analytical tool for single-input-single-output discrete-time systems, and is analogous to the Laplace transform for continuous systems.

Conceptually, the symbol z can be associated with discrete time shifting in a difference equation in the same way that s can be associated with differentiation in a differential equation.

Taking Laplace transforms of equation (7.1), which is the ideal sampled signal, gives

$$F^*(s) = \mathcal{L}[f^*(t)] = \sum_{k=0}^{\infty} f(kT) e^{-kTs}$$
 (7.3)

or

$$F^*(s) = \sum_{k=0}^{\infty} f(kT) (e^{sT})^{-k}$$
 (7.4)

Define z as

$$z = e^{sT} (7.5)$$

then

$$F(z) = \sum_{k=0}^{\infty} f(kT)z^{-k} = Z[f(t)]$$
 (7.6)

In 'long-hand' form equation (7.6) is written as

$$F(z) = f(0) + f(T)z^{-1} + f(2T)z^{-2} + \dots + f(kT)z^{-k}$$
(7.7)

Example 7.1

Find the z-transform of the unit step function f(t) = 1.