Real-Time languages

The requirements of real time software place heavy demands on programming
languages. It should be now be obvious that it is essential that real-time software is
reliable, the failure of a real-time system can be expensive both in terms of lost

production, or in some cases, in the loss of human life (on aircraft control system).

User Requirements

The user requirement 1s divided into six general areas:
(1) Securnty (2) Readability (3) Flexability
(4) Simplicity (5) Portability (6) Efficiency

(1) Security
Security can be considered to be a measure of extent to which a language to detect
errors automatically either at compile time or through the run time.
Economically it 1s important to detect errors at the compilation stage than at run-time
since the earlier the error 1s detected the less it costs to connect.
In real-time system development the compilation is often perform on a computer than
the one used in actual system, whereas run-time testing has done on the actual hardware,

and 1n the later stages, on the hardware connect plant.

(2) Readability
The readability of a program 1s a measure of the ease with which its operation can
be understood without resort to supplementary documentation such as flowcharts or
natural language descriptions.
The emphasis 1s on ease of reading because a particular segment of code will only be

written once but will be read many times.



The benefits of a good readability are:
(1) Reduction in documentation costs.
(2) Easy error detection.

(3) Easy maintenance.

(3) Flexibility
For a language to be described as a general purpose language there is a requirement
that the programmer should be able to express all the operations required in a program
without the need to use assembly coding. The flexibility of language 1s a measure of this
facility.
It 1s particularly important in real-time system, in that frequently non-standard I/O
device will have to be controlled. The achievement of high flexibility can conflict with

achieving high securnty.

(4) Simplicity
In language design, as in other areas of design, the simple 1s to be preferred to the
complex. Sumplicity contribute to security. It reduces the cost of tramning. It reduces the
probability of programming errors arising from misinterpretation of the language

features, it reduce compiler size and leads to more efficient object code.

(5) Portability

The achievement of portability, while very desirable as a means of speeding up
developments, reducing costs, and increasing security, is difficult to achieve in practice.
Surface portability has improved with the standardization agreements on many
languages, 1.e. it 1s now often possible to transfer a program from one computer to
another and find that i1t will compile and run on the computer to which it has been

transferred.

31



There are however, still problems when the word lengths of the two machines differ;,

there may also be problems with precision with which numbers are represented even on

computers with the same word-length.

(6) Efficiency

In the early computer control systems great emphasis was placed on efficiency of the
coding both in term of the size of the object code and the speed of operation as

computers were both expensive and very slow (by today’s standards) .

As a consequence programming was carried out using assembly languages and
frequently tricks were used to keep the code small and fast. The desire for the generation
of efficient object code was carried over into the designs of the early real time languages

and in these languages the emphasis was on efficiency rather than securty and

readability.

Language Requirements and features

The major features which must be considered are listed below:

1. Declarations

9

Types

Inmitialization
Constants

Control structures
Scope and visibilities
Modularity

Exception handling

= 0 = ;B B e

Independent/Separate compilation
10. Multi-tasking

11. Low level constructs



1. Declarations

The purpose of declaring an object used in a program 1s to provide the compiler
with information on the storage requirements and to inform the system explicitly of the
names being used.
Languages such as Pascal require all objects to be specifically declared and for a type to
be associated with the object at declaration.
The provision of type information allows the compiler to check that the object 1s used
only in operations associated with that type. If, for example, an object 1s declared as
being of type real and then is used as an operand in logical operation, the compiler

should detect the type incompatibility and flag the statement as being incorrect.

2. type

As we have seen above, the allocation of types is closely associated with the
declaration of objects. The allocation of a type defines the set of values that can be taken
by an object of that type and the set of operations that can be performed on the object.
The richness of types supported by a language and the degree of rigor with which type
compatibility 1s enforced by the language are important influences on the security of
programs written in the language.

Languages which rigorously enforce type compatibility are said to be strongly typed,
languages which do not enforce type compatibility are said to be weakly typed.

3. Initialization
It 1s useful if, at the time of declaration of variables, it can be given initial value.
Thas 1s not, of course, strictly necessary as a value can always be assigned to a variable.
In terms of the security of a language it 1s important that the compiler checks that a
variable 1s not used before it has had a value assigned to it. It is bad practice to rely on

the compiler to initialize variables to some zero or null value.



The secunty of languages such as Pascal is enhanced by the compiler checking that all

variables have been given an initial value.

4. Constants
Some of the objects referenced in a program will have constant values either
because they are physical or mathematical entities such as the speed of light or p1 () or
because they are a parameter which 1s fixed for that particular implementation of the
program.
It 1s always possible to provide constants by means of imtializing a variable to the

appropriate quantity.

S. control structures
There has been extensive argument over the past few years about the use of both
conditional and unconditional GOTO statements in high-level languages. It is argued
that the use of GOTOs makes a program difficult to read and it has been shown that
any program can be expressed without the use of GOTOs as long as the language
supports the WHILE statement, the IF -- THEN -- ELSE conditional and BOOLEAN

variables.

6. scope and visibility
The scope of a variable 1is defined as the region of a program in which the
variable potentially accessible or modifiable. The regions in which it may actually be
accessed or modified are the regions in which it 1s said to be visible.
Thus 1n a FORTRAN program the scope of a variable declared in the main program
extends over the whole program, but such a vanable, unless named in a COMMON
statement, will not visible i1n any sub-program. Scope and visibility are closely

related to where 1n a program a variable is declared.

34



Choice of programming language

The development and maintenance costs can be considerably reduced 1if a language is

well supported by a range of development tools. Development tools would include all,

or some, of the following;:

1. Editor

9

. Library manager

. Linker/ loader
.Debugger

. Version control

. Database manager

. Pretty printer

o 1 N Wn &S W

. Cross-reference generator



