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Fig. 4.28 Response of the Pl controlled liquid-level system shown in Figure 4.26 to a step change in hy(f)
from 0 to 4 m.

In equation (4.88) the amplitude of the sine term is small, compared with the cosine
term, and can be ignored. Hence

ha() = 4(1 — e %17 c0s0.0909¢) (4.89)

The time response depicted by equation (4.89) is shown in Figure 4.28.

4.5.4 Proportional plus Integral plus Derivative (PID) control

Most commercial controllers provide full PID (also called three-term) control action.
Including a term that is a function of the derivative of the error can, with high-order
plants, provide a stable control solution.

Proportional plus Integral plus Derivative control action is expressed as

d >
u(r) = Kye(t) + K> /(’dl’ + K3 a; (4.90)

Taking Laplace transforms

K> .
U(s) = (K] + T- + K3S) E(s)

— o o) 8
o ] K[S Kl‘s 4

= K (l + L + Tds) E(s) (4.91)
1is
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In equation (4.91), 7y is called the derivative action time, and is formally defined as:
“The time interval in which the part of the control signal due to proportional action
increases by an amount equal to the part of the control signal due to derivative action
when the error is changing at a constant rate’ (BS 1523).

Equation (4.91) can also be expressed as

K(T:Tys* + Tis+ 1)
1:s

U(s) = E(s) (4.92)

4.5.5 The Ziegler—Nichols methods for tuning’ PID controllers

The selection of the PID controller parameters K. 7; and 74 can be obtained using
the classical control system design techniques described in Chapters 5 and 6. In the
1940s, when such tools were just being developed, Ziegler and Nichols (1942) devised
two empirical methods for obtaining the controller parameters. These methods are
still in use.

(a) The Process Reaction Method: This is based on the assumption that the open-
loop step response of most process control systems has an S-shape, called the process
reaction curve, as shown in Figure 4.29. The process reaction curve may be approxi-
mated to a time delay D (also called a transportation lag) and a first-order system of
maximum tangential slope R as shown in Figure 4.29 (see also Figure 3.13).

The Process Reaction Method assumes that the optimum response for the closed-
loop system occurs when the ratio of successive peaks., as defined by equation (3.71).
is 4:1. From equation (3.71) it can be seen that this occurs when the closed-loop
damping ratio has a value of 0.21. The controller parameters, as a function of R and
D, to produce this response. are given in Table 4.2.

an

i(s)

Fig. 4.29 Process reaction curve.
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Table 4.2 Ziegler—Nichols PID parameters using the
Process Reaction Method

Controller tvpe K, T, Ty

P I/RD - -

Pl 0.9RD DI03 -
PID 1.2/RD 2D 0.5D

Table 4.3 Ziegler—Nichols PID parameters using the
Continuous Cycling Method

Controller type K T, Ty

P K. /2 - -

Pl Ko/2.2 Tu/1.2 -
PID KJ/1.7 T./2 T,/8

Note that the Process Reaction Method cannot be used if the open-loop step
response has an overshoot, or contains a pure integrator(s).

(b) The Continuous Cycling Method: This 1s a closed-loop technique whereby,
using proportional control only. the controller gain K, is increased until the system
controlled output ¢(7) oscillates continually at constant amplitude. like a second-
order system with no damping. This condition is referred to as marginal stability
and is discussed further in Chapters 5 and 6. This value of controller gain is called
the ultimate gain K,, and the time period for one oscillation of ¢(7) is called the
ultimate period 7. The controller parameters, as a function of K, and 7, to provide
a similar closed-loop response to the Process Reaction Method, are given in

Table 4.3.

The two Ziegler—Nichols PID tuning methods provide a useful ‘rule of thumb’
empirical approach. The control system design techniques discussed in Chapters 5
and 6 however will generally yield better design solutions.

Of the two techniques, the Process Reaction Method is the casiest and least
disruptive to implement. In practice, the measurement of R and D is very subjective,
and can lead to errors.

The Continuous Cycling Method, although more disruptive, has the potential to
give better results. There is the risk however, particularly with high performance
servo-mechanisms, that if K, is increased by accident to slightly above the marginal
stability value, then full instability can occur, resulting in damage to the system.

Actuator saturation and integral wind-up

One of the practical problems of implementing PID control is that of actuator
saturation and integral wind-up. Since the range of movement in say, a control valve,
has physical limits, once it has saturated, increasing the magnitude of the control
signal further has no effect. However, if there is a difference between desired and
measured values, the resulting error will cause a continuing increase in the integral
term, referred to as integral wind-up. When the error term changes its sign, the
integral term starts to ‘unwind,” and this can cause long time delays and possible
instability. The solution is to limit the maximum value that the integral term
can have.
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modified PID control schemes have proved their usefulness in providing satisfactory
control, although they may not provide optimal control in many given situations.

Outline of the chapter. Section 10-1 has presented introductory material for the
chapter. Section 10-2 deals with tuning methods for the basic PID control, commonly
known as Ziegler-Nichols tuning rules. Section 10-3 discusses modified PID control
schemes, such as PI-D control and I-PD control. Section 10—4 introduces two-degrees-
of-freedom PID control schemes. Section 10-5 introduces the concept of robust con-
trol using a two-degrees-of-freedom control system as an example.

PID control of plants. Figure 10-1 shows a PID control of a plant. If a mathe-
matical model of the plant can be derived, then it is possible to apply various design
techniques for determining parameters of the controller that will meet the transient and
stcady-state specifications of the closed-loop system. However, if the plant is 50 com-
plicated that its mathematical model cannot be easily obtained, then analytical ap-
proach to the design of a PID controller is not possible. Then we must resort to
experimental approaches to the tuning of PID controllers.

The process of selecting the controller parameters to meet given performance spec-
iications 15 known as conirolier iuning. Ziegier and INichols suggesied ruies for tuning
PID controllers (meaning to set values K,, T, and 7,) based on experimental step re-
sponses or based on the value of K, that results in marginal stability when only the pro-
portional control action 1s used. Ziegler—Nichols rules, which are presented in the
following, are very convenient when mathematical models of plants are not known.
(These ruies can, of course, be appiied to the design of systems with known mathe-
matical models.)

Ziegler-Nichols rules for tuning PID controllers. Ziegler and Nichols proposed
rules for determining values of the proportional gain K, integral time 7;, and deriva-
tive time 74 based on the transient response characteristics of a given plant. Such de-
termination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler-Nichols proposal. They are available
in the literature. Here, however, we introduce only the Ziegler-Nichols tuning rules.)

There are two methods called Ziegler—Nichols tuning rules. In both methods, they
aimed at obtaining 25% maximum overshoot in step response (see Figure 10-2).

First method. In the first method, we obtain experimentally the response of the
plant to a unit-step input, as shown in Figure 10-3. If the plant involves neither inte-

K,(1 + - + Tss) =i Plant
T;S
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KFigure 10-2
Unit-step response
curve showing 25%
maximum overshoot.

Figurc 10-3

Unit-step response of a plant.

Figure 10-4
S-shaped response
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grator(s) nor dominant compiex-conjugate poies, then such a unit-step response curve
may look like an S-shaped curve, as shown in Figure 10-4. (If the response does not ex-
hibit an S-shaped curve, this method does not apply.) Such step-response curves may be
generated experimentally or from a dynamic simulation of the plant.

The S-shaped curve may be characterized by two constants, delay time L and time
constant /. The delay time and time constant are determined by drawing a tangent line
at the inflection point of the S-shaped curve and determining the intersections of the
tangent line with the time axis and line c(f) = K, as shown in Figure 10-4. The transfer
function C(s)/U(s) may then be approximated by a first-order system with a transport
lag as follows:

C(s) _ Ke ™
Uls) Ts+1
Ziegler and Nichols suggested to set the values of K, T}, and T, according to the for-

mula shown in Table 10-1.
T Pl ' | s % ™M Tr a E R | P 11 « " 4 «1 1 Nl ar 2 vilk T 1 i : b e =
INOUCE LIIAdL UIC 1L CONLIOLICT Lluncaua Dy LIIC 11 SLITICLIIOU O1 LlcglCl""l‘ 1ICIIOIS TUICS gth:S

e 4
Tangent line at
inflection point
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Table 10-1 Ziegler—Nichols Tuning Rule Based on Step Response of Plant (First

Method)
pe of
Controller K, T; Ta
P % 00 0
T L
PI 0.9 I 03 0
T
PID 1.22- 2L 0.5L
G(s)—K(1+L+Ts)
¢ P T,-S d
L1+ 3+ 0sLs)
= 1.27 1+ 37+ + 0.5Ls
= A\ o /
1 2
(S + Z)
= 0.6T
S
Thus, the PID controller has a pole at the origin and double zeros at s = —1/L.

Second method. Inthe second method, we first set 7; = « and 7, = 0. Using the
proportional control action only (see Figure 10-5), increase K, from 0 to a critical value
K where the output first exhibits sustained oscillations. (If the output does not exhibit
sustained oscillations for whatever value K. may take then this method does not ap-
ply.) Thus, the critical gain K and the corresponding period P, are experimentally de-
termined (see Figure 10-6). Ziegler and Nichols suggested that we set the values of the
parameters K, T;, and T, according to the formula shown in Table 10-2.

N <~ | B | u(®) c(t)
p

Figure 10-5§
Closed-loop system
with a proportional
controller.
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Table 10-2 Ziegler—Nichols Tuning Rule Based on Critical Gain K. and Critical
Period P (Second Method)

Type of
Controller K, T; T4
P 0.5K; % 0
PI 0.45K -—1-°P 0
. Ccr 1 .2 cr
PID 0.6K., 0.5P: 0.125P;

Notice that the PID controller tuned by the second method of Ziegler—Nichols rules
gives

1
+ —+
G.(s) = ( Ts Tds)

- 0.6KC,(1 + + 0.125 Pc,s)

0.5P..s

4 \2
O R
-_-(+Pc,)

0.0753K P~ .

Thus, the PID controller has a pole at the origin and double zeros ats = —4/P,.

Comments. Zlegler—Nlchols tuning rules (and other tumng rules presented in the

| ha | B A Aler 110ad A 41mma DI Aanteanlla e avars sl ntenl ocviotarmco
lll\/latul U} llaVU U\/\/ll Wlu&l‘y CIOGWAL L\ LUSIEIN L 202 U\lllll\lll\/lo Ll.l l.ll.\.l\v\/\” \J\Jlltl\)l OJOL\JIIAO

where the plant dynamics are not precisely known. Over many years, such tuning rules
proved to be very useful. Ziegler-Nichols tuning rules can, of course, be applied to
plants whose dynamics are known. (If plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegier—-INichols tuning rules. )

If the transfer function of the plant is known, a unit-step response may be calculated
or the critical gain K. and critical period P may be calculated. Then, using those calcu-
lated values, it is possible to determine the parameters K, T}, and T, from Table 10-1 or
10-2. However, the real usefulness of Ziegler—Nichols tuning rules (and other tuning
ruies) becomes appareni when ine piani dynamics are noi known so iiai no analiyiicai
or graphical approaches to the design of controllers are available.

Generally, for plants with complicated dynamics but no integrators, Ziegler—-Nichols
tuning rules can be applied. However, if the plant has an integrator, these rules may not
be applied in some cases. To illustrate such a case where Ziegler-Nichols rules do not
apply, consider the foliowing case: Suppose that a unity-feedback control system has a
plant whose transfer function is

Gl (s + 2)(s + 3)

s(s + 1)(s + 5)
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EXAMPLE 10-1

Figure 10-7
PID-controlled

svstem.
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Figure 10-3, the step response of this plant will not have an S-shaped response curve;
rather, the response increases with time. Also, if the second method is attempted (see
Figure 10-3), the closed-loop system with a proportional controller will not exhibit sus-
tained oscillations whatever value the gain K, may take. This can be seen from the fol-
lowing analysis. Since the characteristic equation is

s+ D +5)+K,(s+2)(s+3)=0
or

s>+ (6 + K,)s* + (5 + 5K,)s + 6K, = 0
the Routh array becomes

53 1 5+ 5K,
52 6 + K, oK,
4 30+ 29K, + 5K}

6+ K,
s 6K,

The coefficients in the first column are positive for all values of positive K,. Thus, in
the present case the closed-loop system will not exhibit sustained oscillations and,
therefore, the critical gain value K. does not exist. Hence, the second method does not
apply.

If the plant 1s such that Ziegler-Nichols rules can be applied, then the plant with a
PID controller tuned by Ziegler—Nichols rules will exhibit approximately 10% ~ 60%
maximum overshoot in step response. On the average (experimented on many differ-
ent plants), the maximum overshoot is approximately 25%. (This is quite understand-
able because the values suggested in Tables 10-1 and 10-2 are based on the average.)
In a given case, if the maximum overshoot is excessive, it is always possible (experi-
mentally or otherwise) to make fine tuning so that the closed-loop system will exhibit
satisfactory transient responses. In fact, Ziegler-Nichols tuning rules give an educated
guess for the parameter values and provide a starting point for fine tuning.

Consider the control system shown in Figure 10-7 in which a PTD controller is nsed to contral
the system. The PID controller has the transfer function

1
G.(s) = Kp(l + ﬁ + TdS)
Although many analytical methods are available for the design of a PID controller for the pre-

sent system, Ict us apply a Zicgler—Nichols tuning rule for the determination of the values of pa-
rameters Kp, 7j, and T4. Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-

proximately 25%.

R(S) 1 C(S)

S5+ 1)s+5)

G(5) iy

PID
Controller
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Since the plant has an integrator, we use the second method of Ziegler—Nichols tuning rules.
By setting 7; = « and 7, = 0, we obtain the closed-loop transfer function as follows:
C(s) Kp
R(s) s(s+ 1)(s+35) +K,
'I'he value ot K, that makes the system marginally stable so that sustained oscillation occurs can

be obtained by use of Routh'’s stability criterion. Since the characteristic equation for the closed-
loop system is

s*+65°+55+K,=0

the Routh array becomes as follows:

s 1 5
52 6 K,
r 30 - K,

6
5 K,

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-
tion wiii occur if A, = 30. Thus, the criticai gain K 15

With gain K, set equal to K ( = 30), the characteristic equation becomes

S+ 657 +55+30=0

To find the frequency of the sustained oscillation, we substitute s = jw into this characteristic
equation as follows:

(jw)® + 6(jw) + S(jw) + 30 =0
or
6(5 — @?) + jo(5 — w?) =0

from which we find the frequency of the sustained oscillation to be w2 = S or @ = V5. Hence, the
period of sustained oscillation is

-2 000

»
a
w3

Referring to Table 10-2, we determine K, 7}, and 7, as follows:
K, = 0.6K., = 18
T; = 0.5P.. = 1.405
T, = 0125P, = 0.35124

The transfer function of the PID controller is thus

G.(s) = Kp(l + L + Tds\,
\ /

L\
Ald

1
1.405s

| 6.3223(s + 1.4235)?

L

= 18(1 + + 0.35124s)
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Figure 10-8

Block diagram of the
system with PID con
troller designed by use
of Ziegler—Nichols
tuning rule (second

method).
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Rs) c>x _ [63223(s+142352 | 1 s,
5 I s(s+ 1)(s+35)

PID Controller

The PID controller has a pole at the origin and double zero at s = — 1.4235. A block diagram of
the control system with the designed PID controller is shown in Figure 10-8.
Next, let us examine the unit-step response of the system. The closed-loop transfer function

C(s)/R(s) is given by
C(s) _ 6.3223s% + 18s + 12.811
R(s) s*+ 65+ 11.32235% + 185 + 12.811

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB Pro-
gram 10-1. The resulting unit-step response curve is shown in Figure 10-9. The maximum over-
shoot in the unit-step response is approximately 62%. The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be
made on the computer. We find that by keeping K, = 18 and by moving the double zero of the
PID controller tos = — 0.65, that is, using the PID controller

2
i 0.76923) - 13.846 £+ 069 (10-1)

3.077s

G.s) = 18(1 +
s

Figure 10-10). If the proportional gain K, is increased to 39.42, without changing the location of

the double zero (s = — 0.65), that is, using the PID controller
1 (s + 0.65)°
= 30, + + 0. = 30, -
G.(s) = 39 42(1 30770 O7692s) 30.322 7 (10-2)

then the speed of response isincreased, but the maximum overshoot is also increased to approximately
28%, as shown in Figure 10-11. Since the maximum overshoot in this case is fairly close to 25% and
the response is faster than the system with G.(s) given by Equation (10-1), we may consider G.(s) as
given by Equation (10-2) as acceptable. Then the tuned values of K, T}, and T, become

K,=3942, T,=3077, T,=07692

It is interesting to observe that these values respectively are approximately twice the values sug-
gested by the second method of the Ziegler—Nichols tuning rule. The important thing to note here
is that the Ziegler—Nichols tuning rule has provided a starting point for fine tuning.

It is instructive to note that, for the case where the double zero is located at s = — 1.4235, in-
creasing the value of K, increases the speed of response, but as far as the percentage maximum

MATLAB Program 10--1

num=1[0 0 63223 18 12.811];
den=[1 6 113223 18 12.811];
step(num,den)

grid

title(’Unit-Step Response’)

Chapter 10 / PID Controls and Introduction to Robust Control



Figure 10-9
Unit-step response
curve of PID-
controlled system
designed by use of
7Ziegler—Nichols
tuning rule (second
method).

Figure 10-10
Unit-step response
of the system
shown in Figure
10-7 with PID con-
iroiier having para-
meters K, = 18,
; = 3.077, and
T4 = 0.7692.
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overshoot is concerned, varying gain K, has very little effect. The reason for this may be seen from
the root-locus analysis. Figure 10-12 shows the root-locus diagram for the system designed by
use of the second method of Ziegler—Nichols tuning rules. Since the dominant branches of root
loci are along the { = 0.3 lines for a considerable range of K, varying the value of K (from 6 to
30) will not change the damping ratio of the dominant closed-loop poles very much. However,
varying the location of the double zero has a significant effect on the maximum overshoot, be-
cause the damping ratio of the dominant closed-loop poles can be changed significantly. This can
also be seen from the root-locus analysis. Figure 10-13 shows the root-locus diagram for the sys-

tem where the PID controller has the double zero at s = — 0.65. Notice the change of the root-
locus configuration. This change in the configuration makes it possible to change the damping
ic oftha do

ant nlncaA lann pr\‘ac

Mt
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Figure 10-11
Unit-step response
of the system
shown in Figure
i0-7 wiih FID con-
troller having para-
meters K, = 3942,

T; = 3.077,and
T4 = 0.7692.
Figure 10-12

Root-locus diagram
of system when
PID controller has
double zero at

s = — 1.423S.
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in Cigure 10-13, notice that, in the case where ihe sysiem has gain KX — 30.322, ihe ciosed-ivup
poles at s = —2.35 * j4.82 act as dominant poles. Two additional closed-loop poles are very near
the double zero ats = — 0.65, with the result that these closed-loop poles and the double zero al-

most cancel each other. The dominant pair of closed-loop poles indeed determines the nature of
the response. On the other hand, when the system has K = 13.846, the closed-loop poles at
s = — 2.35 % j2.62 are not quite dominant because the two other closed-loop poles near the dou-
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Figure 10-13 N I TR
Root-locus diagram = =k =
of system when

PID controller has

double zero at

s = — 0.65.

K = 13.846 corre- L
sponds to Ge(s) K = 30.322
given by Equation

(10-1) and -0
K = 30.322 corre-

sponds to G.(s) k=160
given by Equation - 8
(10-2).

ble zero at s = — 0.65 have considerable effect on the response. The maximum overshoot in the
step response in this case (18%) is much larger than the case where the system is of second-order
having only dominant closed-loop poles. (In the latter case the maximum overshoot in the step
response would be approximately 6%.)

10-3 MODIFICATIONS OF PID CONTROL SCHEMES

Consider the basic PID control system shown in Figure 10-14(a), where the system 1s
subjected to disturbances and noises. Figure 10-14(b) is a modified block diagram of the
same system. In the basic PID control system such as the one shown in Figure 10-14(b),
if the reference input is a step function, then, because of the presence of the derivative
term in the control action, the manipulated variable u(¢) will involve an impulse func-
tion (delta function). In an actual PID controller, instead of the pure derivative term
Tas we employv
TdS
1+ ')'TdS

where the value of y is somewhere around 0.1. Therefore, when the reference inputis a
step. function, the manipulated variable u(f) will not involve an impulse function, but

a S!"a"? ?nlco f"ﬂCtl"ﬂ. Quch a nhenomennn i€ called caf.nntnt lnf'lr
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