University Of Diyala
College Of Engineering
Computer Engineering Department

Digital System Design 1|

Dr. Yasir Al-Zubaidi
Third stage
2019



Multiplexer-Based Single Register
Transfers

= MUX connected to register outputs produce flexible
transfer structures

= Transfers: K1:_RU <— R1
K2 K1: RO <— R2

Loa

> B

S Load

Loa —Qiéru____ A

R1




Register Design

= Assume: a register consists of identical cells

= Register design can be approached as follows:

* Design a representative cell for the register
* Make copies of the cell and connect together to form the
register

* Applying appropriate “boundary conditions” to cells that need
to be different and contract if appropriate

= Regqister cell design is the first step of the above
process




Approach I: Multiplexer-based

= An n-input multiplexer with a variety of sources and functions
» Load enable by OR of control signals K, K4, ... K1 (for 00...0, no load)

= Use encoder + muttiptexer
to select sources and/or

transfer functions
....... -
| logcd
- """" Y| Dedicated
—— lopc k-1 i
S N
.ﬁ.‘
e




Example 1: Register Cell Design

Register A (m-bits) Specification:
* Data input: B; Control inputs (CX, CY): (0,0), (0,1) (1,0)
* Register transfers:
« CX:A—BVA; CY:A<B®A: Hold state: (0,0)
Load Control: Load = CX + CY

Since all control combinations appear as if encoded (0,0),
(0,1), (1,0), can use multiplexer without encoder:

S, =CX
Sp=CY CX

lp=A Hold A cY
,=A«—B®A  CY=1 S
|E=Ait—Ei‘.FAi CX=1 Iy




Approach ll: Sequential Circuit Design

* Find a state diagram or state table

= For optimization:
* Use K-maps for up to 4 to 6 variables
* Otherwise, use computer-aided or manual optimization




Example 1 Again

= State Table for D::

Hold Aiv Bi Ai(®Bi

CX=0 | cX=1 | cx=1| cx=0 | cXx=0
A | CY=0 | cYy=0 | cY=0| cy=1 | cy=1
B=0 | B=1 | B=0 | B=

0 0 0 1 0 1
1 1 1 1 1 0

® Four variables (CX, CY, A, B) should give a total of 16
state table entries

® By using:
= Combinations of variable names and values
= Don't care conditions (for CX = CY = 1)

only 12 entries are required to represent the 16 entries




Example 1 Again (Contd.)

= K-map - Use variable ordering CX, CY, A, B;and

assume a D flip-flop

D,

1

CY

CX




Example 1 Again (Contd.)

= The resulting SOP equation:
D,=CXB +CYAB +AB +CYA

=CXB, +A (CYB)+A(CYB),)
=CXB,+A®(CYB)
The gate input cost per cell = 13
= The gate input cost per cell for the previous

version Is:

Per cell: 19
Shared decoder logic: 8

= Cost gain by sequential design > 6 per cell

= Also, no Enable on the flip-flop makes it cost
less




Serial Transfers and Microoperations

= Serial Transfers

* Used for “narrow” transfer paths
* Example 1: Telephone or cable line

= Parallel-to-Serial conversion at source
= Serial-to-Parallel conversion at destination
Load/Right Shift Registers

= Serial microoperations 5‘*"“"—.

* Example 1: Addition In L—pf A
= Alow costway f f f f FA
= Loss in performance A3 A2 Al A0 B Sum
Parallel Load | Cin
Serial_._ Cout
B3 B2 Bl B0
Parallel Load Q D
(Clock and Load/Shift P
Control not shown)




Overview

= Datapath and control
= Microoperations

= Sequencing and control

® Algorithmic State Machines (ASM)

= ASM chart

= Timing considerations

= ASM chart examples: Binary multiplier
® Hardwired Control

= Control design methods

= Sequence register and decoder

= One flip-flop per state

* Microprogrammed control




Control Unit Types

= Two distinct classes:

* Programmable
* Non-programmable.

= A programmable control unit:

* An external memory array for storing instructions and control
information

* A program counter (PC) register points to the next instruction
to be executed

* Decision logic for determining the sequence of operations
and logic to interpret the instructions
= A non-programmable control unit: does not fetch
instructions from a memory and is not responsible for
sequencing instructions




Algorithmic State Machines

The function of a sequential circuit can be represented
by a state table or a state diagram.

An Algorithmic State Machine (ASM) is a flowchart-
like way to specify state diagrams for sequential logic
and, optionally, actions performed in a datapath.

A flowchart is a way of showing actions and control flow in an
algorithm.

An ASM explicitly specifies a sequence of actions and their timing
relationships

An ASM chart directly leads to a hardware realization
Primitives:
1. State Box (a rectangle)

2. Decision Box
| Scalar (a diamond)
Il.  Vector (a hexagon)
3. Conditional Output Box (an oval)




State Box

= A rectangle with:
® The symbolic name for the state
® An optional state code

® Containing register transfer operations, and outputs
activated within or while leaving the state

The symbolic name for the state IDLE 1 0000

marked outside the upper left top Register transfers or outputs
An optional state code, if assigned,

outside the upper right top R0
RUN

1




Decision Box

= Scalar : A diamond with:
* One input path (entry point).
* One input condition that is tested.

* A TRUE/FALSE exit path (logic
1/0).

(False Condition) (True Condition)

= Vector: A hexagon with:
® One input path (entry point).
* Avector of input conditions
tested.

* Up to 2" output paths. The path
taken has a binary vector value
that matches the vector input
condition

(Binary Vector Values) (Binary Vector Values)

(Vector of Input
Conditions)

Z, Q0




Conditional Output Box

= An oval with:
* One input path from a decision box(es)

* One output path From Decision Box(es)
* Register transfers or outputs that occur
only if the conditional path to the box is
taken. (Register transfers
= Transfers and outputs or ﬂﬁtPU}lﬁl
* in a state box are Moore type - RI{T_H
dependent only on state
* in a conditional output box are Mealy l
type - dependent on both state and

inputs




Connecting Boxes Together

By connecting boxes together, we see the power of

expression.
P DLE |

A—10
AVAIL

= What are the:

* Inputs? start 0 1
* Outputs? Avalil, Init
* Conditional Outputs? y

* Transfers? A<-0, PC<-0 ( PC “)
* Conditional Transfers? INIT, transfer: PC<-0




ASM Blocks

= One state box along
with all decision and
conditional output
boxes connected
to it, called an ASM
Block. i.e., the ASM Block
Includes all items on the
path from the current
state to the same or other
states.

ASM BLOCK




ASM Timing

= Qutputs appear while in the state

= Register transfers and conditional outputs occur at the clock
while exiting the state - New value occur in the next state!

Clock cycle 1 Clock cycle 2 Clock cycle 3 ’
Clock [

ASM BLOCK]

START

Q,

uﬂ - Ai— |

State IDLE X MUL 1 T

AVAIL \

A 0034 X 0000




Multiply Overview

« Binary multiplication is just a bunch of left shifts and adds

multiplicand
multiplier

partial
> product

array

\

-

can be formed in parallel
~ and added in parallel for
faster multiplication

double precision product



Multiplier Example

= Example: (101 x 011) Base 2

= Partial products are: 1 0 1 multiplicanc
101x 0,101 x 1,and 101 x 1 Xx 0 1 1 multiplier
1 0 1
1 0 1
0 0 0
0O 0 1 1 1 1



Multiplication: Implementation (version 1)

Multipllerd = 1 1. Test MuRigherd = 0
MuRlplier
r

* 1a. Add mumglicand fo proguct and
Muttiplicand place the result In Product register
St ke [--—
A
£4 bits —
E—

L ] ]
Multipller
64-bit ALL S night |- 2. Shift the Muliplicand register et 1 bit
1 l
| Proguct Control test }"'— 3. Shift the Multiplier ragistar rigt 1 bit

Virtie
'\ / Mo = 32 repetitions
¥
Yies: 32 repetiions

Datapath

B4 bits

Control



Unisigned shift-add multiplier (version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,

32-bit multiplier reg

A ———

Multiplicand

Shift Left

\ 64 bits

64 bltALU /

Product
64 bits

Write

—

Mulnphﬂﬁj Shift Right

32 bits

Multiplier = datapath + control

N

Control




ultiply Algorithm Version 1

gy il iy

Multiplier0 =1

Multiplier0 =0

1a. Add multiplicand to product &
place the result in Product register

Product Multiplier Multiplicand
0000 0000 0011 0000 0010
0000 0010 0011 0000 0010
0000 0010 0011 0000 0100
0000 0010 0001 0000 0100
0000 0110 0001 0000 0100
0000 0110 0001 0000 1000
0000 0110 0000 0000 1000
0000 0110 0000 0000 1000

2. Shift the I'Iri[ulti!}licanrl 1'egi5te1' left 1 hit.l

L

3. Shift the Multiplier register right 1 bit.

No:< 32 1'ePeriliuns

| Yes: 32 repetitions

Done
2004 Margan Kaufmarn Publishers 25



Observations on Multiply Version 1

« 1 clock per cycle => =~ 100 clocks per multiply
because of 32 repetitions, 3 steps in one repetition

— Ratio of add/sub to multiply is from 5:1 to 100:1
— Slow

« 0’s inserted in the rightmost bit of multiplicand as
shifting left
=> |east significant bits of product never changed
once formed

« 1/2 bits in multiplicand always 0

— MSB are 0s at the beginning
— 0Ois inserted in LSB as multiplicand shifting left

=> 64-bit multiplicand register is wasted
=> 64-bit adder is wasted

Instead of shifting multiplicand to left, let’s shift
productto right 2004 Mergan Kastnarm usterers 2 6




MULTIPLY HARDWARE Version 2

« 32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product
reg, 32-bit Multiplier reg

[Multiplicand

32 bits

I'lrf[lllﬁp]iﬂ'ﬂ Shift Right

it ALT 32hit7
l —ly Shift Right
Write k

| 64 bits




Product Multiplier Multiplicand

Multiply Algorithm Version 2

Multiplier( =1

Multiplier0 =0

la. Add multiplicand to the left half of product &
place the result in the left half of Product register

WhSwpRLhSen e

0000 0000 0011 0010

0010 0000 0011 0010

0001 0000 0011 0010 2. Shift the Product 1'Eg‘ster 1*iﬂl11t 1 bit.

0001 0000 0001 0010
0011 0000 0001 0010

0001 1000 0001 0010

3. Shift the Multiplier register right 1 bit.

0001 1000 0000 0010
0001 1000 0000 0010
0000 1100 0000 0010
0000 1100 0000 0010
0000 1100 0000 0010
0000 0110 0000 0010
0000 0110 0000 0010

0000 0110 0000 0010

No: < 32 l‘EPEl‘iﬁﬂﬂ.‘i

| Yes: 32 repetitions

Done

©2004 Morgan Kaufmann Pubilshers 2 8



([ Start)

Still more wasted space in Version2!

Multiplier0 =1

1. Test Multiplier0 = 0
Multiplier

1a. Add multiplicand to the left half of product &

lace the result in the left half of Product register
Product Multiplier Multiplicand

 mos o oo -

2: 0001 0000 0011 0010 | 2. Shift the Product register right 1 bit.

3: 0001 0000 0001 0010 l

1: 0011 0000 0001 0010

2: 00011000 0001 0010 3. Shift the MulriElier l'egister 1‘ight 1 bit.
3: 0001 1000 0000 0010

1: 0001 1000 0000 0010 1

2: 00001100 0000 0010 37 nd

3: 00001100 0000 0010 n No: < 32 repetitions
1: 0000 1100 0000 0010 epetition.

2: 0000 0110 0000 0010

3: 0000 0110 0QOO0O 0010 | Yes: 32 repetitions

0000 0110 0000 0010



Observations on Multiply Version 2

* Productregister wastes space that exactly matches
size of multiplier
=> combine Multiplier register and Product register




Example (101) x(01 1) Again

» Reoraanizina example to follow hardware algorithm:

o O O 4+ O O 4+ O 9w

Multiplicand (B)

1 0 1-
0 1 1«
0O 0 O
1 0 1
1 0 1
0 1 O
1 0 1
1T 1 1
o 1 1
0 0 1

1
.1

Multiplier (Q)

Clear C || A (Carryand register A)
Multipler, =1 == Add B
Addition

Shift Right (Zero-fill C)
Multipler; =1==>Add B
Addition

Shift Right

1 Multipler, = 0 == No Add, Shift
Right



Multiplier Example: Block Diagram

n-1 IN
nk
l Multiplicand y

Counter P Register B

[ logn ny
¥ ki
Zero detect
T (Go) Cout Parallel adder
'-'.Z n n
Control |Q, ¥ Multiplier y
unit B
0— C > Shift register A > Shift register Q

4/1(
n
A\ A

Control signals Product
ouT




W=

o

Multiplexer Example: Operation

The multiplicand is loaded into register B.
The multiplier is loaded into register Q.
When G becomes 1, register C|| A is initialized to 0.

Down Counter P is initialized to n — 1 (n = number of bits in
multiplier)

The partial products are formed in register C||A||Q.

Each multiplier (Q) bit, beginning with the LSB, is processed (if bit
is 1, B is added to partial product of A; if bit is 0, do nothing)
C|IAl|Q is shifted right using the shift register

*  Partial product bits fill vacant locations in Q as multiplier is shifted
out

* If overflow during addition, the outgoing carry is recovered from C
during the right shift

Steps 6 and 7 are repeated until P = 0 as detected by Zero detect.




	 Digital System Design II 
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Slide 8 
	Slide 9 
	Slide 10 
	Slide 11 
	Slide 12 
	Slide 13 
	Slide 14 
	Slide 15 
	Slide 16 
	Slide 17 
	Slide 18 
	Slide 19 
	Slide 20 
	Slide 21 
	Slide 22 
	Slide 23 
	Slide 24 
	Slide 25 
	Slide 26 
	Slide 27 
	Slide 28 
	Slide 29 
	Slide 30 
	Slide 31 
	Slide 32 



