University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design 11

ASM Based Datapath
and Control Design

Dr. Yasir Al-Zubaidi
Third stage
2021

Overview

= Datapath and control
= Microoperations

= Seqguencing and control

® Algorithmic State Machines (ASM)

= ASM chart

= Timing considerations

= ASM chart examples: Binary multiplier
® Hardwired Control

= Control design methods

= Sequence register and decoder

= One flip-flop per state

® Microprogrammed control

Multiplier Example: ASM Chart

‘ MULD

-
.&
0 o 1
L 4
A+— A+E,
C+—Cout
MUL1

C—0,CllA||Q—srC|lA]lQ,
P—P-1

—ﬂél

Multiplier Example: ASM Chart (Contd.)

* Three states employed here:
® IDLE state:

* input G is used as the condition for starting the
multiplication

= C, A, and P are initialized
®* MULO state: conditional addition is performed
based on the value of Q.

* MUL1 state:

* right shift is performed to capture the partial product and
position the next bit of the multiplier in Qg

* Down counterP=P - 1

* P=0is used to sense completion or continuation of the
multiplication.

Multiplier Example: Control Signal

Table

Control Signals for Binary Multiplier

Block Diagram Control Control
Module Microope ration Signal N ame Expression
Register 4: A0 Initialize IDILE - &G
A«—A+B I.oad MULO- @y
CllA4||Q@+srC| 4] @ Shift dec MUL1
Register B: B+— IN Load B LOADE
Flip-Flop C: C+—10 Clear C IDLE- G+ MUL1
C— Con Load —
Register O: Q «—IN Load O LOADQ
CllA||@+srC|| 4]0 Shift_dec =
Counter P: P+ n-1 Initialize —
P—P-1 Shift dec —

Multiplier Example: Control Signal
Table (Contd.)

» Signals are defined on a register basis

= LOADQ and LOADB: external signals controlled from
the system using the multiplier and will not be
considered a part of this design

* Many control signals are “reused” for different
registers.

® These 4 control signals are the “outputs” of the control unit:
initialize, load, shift dec, clear ¢

Multiplier Example - Sequencing Part of

ASM

= With the outputs
represented by the
table, they can be
removed from the

IDLE :i= 00

ASM making the
ASM to represent
only the sequencing

(next state) behavior

Similar to FsM)

01

MULA

Hardwired Control

= Control Design Methods

® Procedure specializations that use a single signal
to represent each state
» Sequence Register and Decoder

* Sequence register with encoded states, e.g., 00, 01, 10, 11.

* Decoder outputs produce “state” signals, e.g., 0001, 0010,
0100, 1000.

* One Flip-flop per State

* Flip-flop outputs as “state” signals, e. g., 0001, 0010, 0100,
1000.

Multiplier Example: Sequencer and

Decoder Design - Specifica

tion

= |nitially, use sequential circuit design techniques

» First, define:
¢ States: IDLE, MULO, MUL1

* Input Signals: G, Z, Qq (Q, affects outputs, not next state)
* Qutput Signals: Initialize, LOAD, Shift Dec, Clear C

* State Transition Diagram (Use Sequencing ASM)

* Qutput Function: Use Control Signal Table

= Second, find

¢ State Assignments

* Use two state bits to encode ‘
the three states IDLE, MULDO,

and MUL1.

State | M1 | MO
IDLE 0 0
MULO 0 1
MULI1 1 0
Unused 1 1

Multiplier Example: Sequencer and

Decoder Design - Formulation

* Assuming that state variables M1 and MO are decoded into
states, the next state part of the state table is:

Current State | Input | Next State Current State | Input | Next State
G Z M1 MO M1 MO G Z M1 MO

IDLE 00 0 O MULI 00 0 1
IDLE 0 1 0 O MULI 01 0 0
IDLE 1. 0 0 1 MULI I & 0 1
IDLE i 1 0 1 MULI 1 1 0 0
MULO 00 i B Unused | 0 0 d d
MULO g 9 . Unused | 0 1 d d
MULO 1 0 1 0 Unused I B d d
MULO i1 i o Unused I 1 d d

Multiplier Example: Sequencer and Decoder
Design —Equations Derivation/Optimization

» Finding the equations for M1 and MO using decoded states:
M1 =MULO .
MO=IDLE-G+MUL1-Z
* The output equations using the decoded states:
Initialize = IDLE - G
Load = MULO - Q
Clear C=IDLE - G+ MULA
Shift dec = MUL1

* Doing multiple level optimization, extract IDLE - G:
START =IDLE -G
M1 = MULO —_
MO = START + MUL1 - Z
Initialize = START
Load = MULO - Q
Clear C = START + MUL1
Shift dec = MUL1

= The resulting circuit using flip-flops, a decoder, and the above

equations is given on the next slide.

Multiplier Example: Sequencer and
Decoder Design - Implementation

Initialize
. Clear_C
DECODER |
AD of
1 :
2+ Shift_dec
Al 3 |

Load

12

-. » 0 .
s e Wik datapath_func : process (CLK)

library ieee; . ;
use ieee.std_logic_unsigned.all; variable CA: std_logic_vector (4 downto 0);
entity binary_multiplier is begin
port(CLK, RESET, G, LOADB, LOADQ: in std_logic; if (CLK'event and CLK='1") then
MULT_IN : in std_logic_vector (3 downto 0); if LOADB="1" th
MULT_OUT : out std_logic_vector (7 downto 0)) i .
end t&
end if;
architecture behavior_4 of binary_multiplier is if LOADQ = "1’ then
type state_type is (IDLE, MULO, MUL1); Q <= MULT_IN;
variable P:=3; end iF:

signal state, next_state : state_type;

signal A, B, Q:std_logic_vector(3 downto 0); case state is

signal C, Z:std_logic; when IDLE =>
begin if G ="1"then
Z<= P(1) NOR P(0); C<="0";
MULT_OUT <= A & Q; A<= 11000011;
state_register : process (CLK, RESET) p <="117%
begin end if;
if (RESET = '1') then when MULO =>
| rsft?gle_l((: IDtLE; d CLK='"1") th g Q{O) g
els event an = en - + (0" :
state <= next_state; | =By S aNEY,
endif; £hE
end process; CA:=C&A;
end if;
next_state_func : process (G, Z, state) C <= CA(4);
aegln A <= CA(3 downto 0);
case state is
when IDLE => when MUL1 =>
if G="1'then next_state <= MULD; C<="04
else next_state <= IDLE; A <= C & A(3 downto 1);
end if; Q <= A(0) & Q(3 downto 1);
When MULD => p <= p ™ ||01u.
next_state <= MUL1; d . !
when MUL1 => G e
if Z='1"then next_state <= IDLE; end if;
else next_state <= MULD; end process;
end if;
end case; end behavior_4;

end process;

Speeding Up the Multiplier

= |n processing each bit of the multiplier, the
circuit visits states MULO and MUL1 In
sequence.

= By redesigning the multiplier, is it possible to
visit only a single state per bit processed?

Speeding Up Multiply (Contd.)

* The operations in MULO and MULA1:
® In MULO, a conditional add of B

® In MUL1, aright shiftof C || A || Q in a shift register, the
decrementing of P, and a test for P = 0 (on the old value of P)

= Any solution that uses one state must combine all of
the operations listed into one state

® The operations involving P are already done in a single state,
so not a problem.

® The right shift, however, depends on the result of the
conditional addition. So these two operations must be
combined!

Speeding Up Multiply (Contd.)

= By replacing the shift
register with a
combinational shifter
and combining the
adder and shifter,

the states can be merged.

= The C-bit is no longer needed.

= In this case, Z and Q,
have been made into
a vector.

IDLE

Al Q¢ sr Coull (A+O)B)

ol

L

h

00

Al QésrC

ax|l (A+0)]| Q

10

A

01

A

y

11

@Q(—sr Cou || (A+B)®

S

Y

@Q st Cout || (A+B}®

Microprogrammed Control

Condmi*

= Microprogrammed Control — a iy Shele signals from dofene
control unit with binary control | b ¢
values stored as words in memory. Next-address -
generator
. . \ . l‘ Seguancer
= Microinstructions — words in the)
Control addess
control memory. register
. Mfcroprogram — a sequence of
microinstructions. .
memory
(ROM)
= Control Memory — RAM or ROM Dite
memory holding the ————
mlcrOInstructlons o + +_ -
: i Confrol defle regiaer’
® Whiteable Control Memory — RAM g {oponed) g
Memory into which b p {,m

microinstructions may be written

