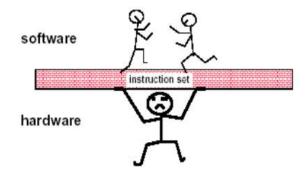
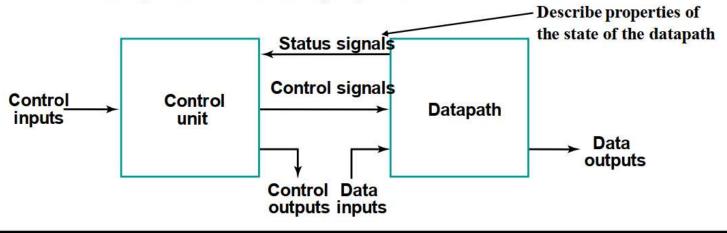
University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design II Microprogramming

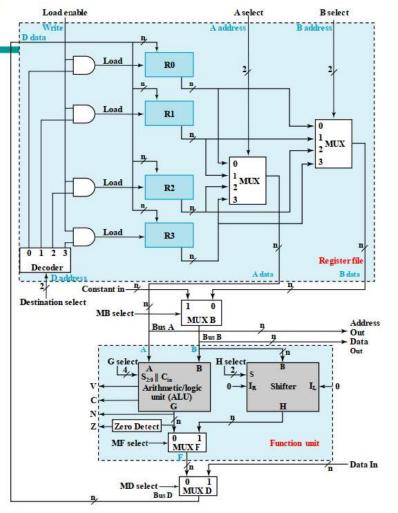

Dr. Yasir Al-Zubaidi
Third stage
2021

Microprogramming Overview

- Part 1 Datapaths
 - Introduction
 - Datapath Example
 - Arithmetic Logic Unit (ALU)
 - Shifter
 - Datapath Representation and Control Word
- Part 2 A Simple Computer
 - Instruction Set Architecture (ISA)
 - Single-Cycle Hardwired Control
- Part 3 Multiple Cycle Hardwired Control
 - Single Cycle Computer Issues
 - Sequential Control Design

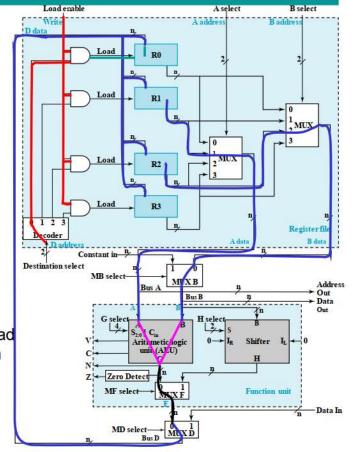

Introduction

- Computer Specification
 - Instruction Set Architecture (ISA) the specification of a computer's appearance to a programmer at its lowest level
 - Computer Architecture a high-level description of the hardware implementing the computer derived from the ISA
 - The architecture usually includes additional specifications such as speed, cost, and reliability.


Introduction (Contd.)

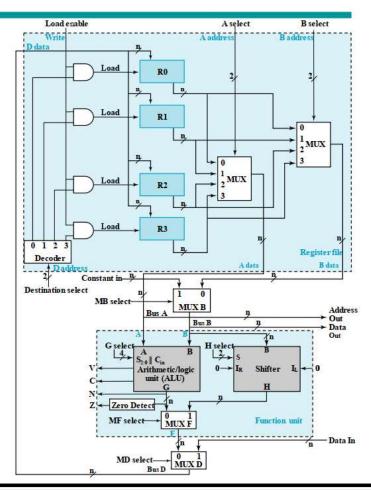
- Simple computer architecture decomposed into:
 - Datapath: performing operations
 - A set of registers
 - Microoperations performed on the data stored in the registers
 - A control interface
 - Control unit: controlling datapath operations
 - Programmable & Non-programmable

Datapath Example

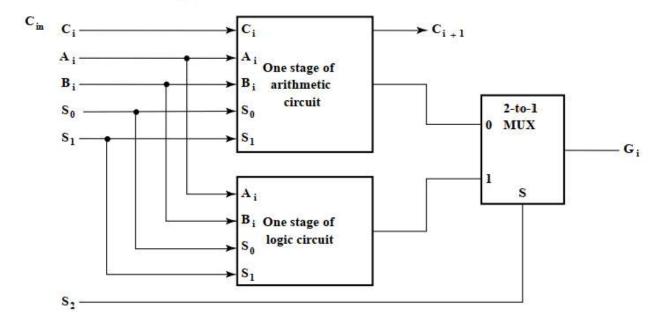

- Register file:
 - Four parallel-load regs
 - Two mux-based register selectors
 - Register destination decoder
- Microoperation Implementation
 - Mux B for external constant input
 - Buses A and B with external address and data outputs
 - Function Unit:
 - ALU and Shifter with Mux F for output select
 - Mux D for external data input
 - Logic for generating status bits V, C, N, Z

Datapath Example: Performing a Microoperation

Microoperation: R0 ← R1 + R2


- Apply 01 to A select to place contents of R1 onto Bus A
- Apply 10 to B select to place contents of R2 onto B data and apply 0 to MB select to place B data on Bus B
- Apply 0010 to G select to perform addition G = Bus A + Bus B
- Apply 0 to MF select and 0 to MD select to place the value of G onto BUS D
- Apply 00 to Destination select to enable the Load input to R0
- Apply 1 to Load Enable to force the Load input to R0 to 1 so that R0 is loaded on the clock pulse (not shown)
- The overall microoperation requires 1 clock cycle

Datapath Example: Key Control Actions for Microoperation Alternatives


Various microoperations:

- Perform a shift microoperation: apply 1 to MF select
- Use a constant in a micro-operation using Bus B: apply 1 to MB select
- Provide an address and data for a memory or output write microoperation – apply 0 to Load enable to prevent register loading
- Provide an address and obtain data for a memory or output read microoperation – apply 1 to MD select
- For some of the above, other control signals become don't cares

Arithmetic Logic Unit (ALU)

- Decompose the ALU into:
 - An arithmetic circuit & A logic circuit
 - A selector to pick between the two circuits

Arithmetic Circuit Design

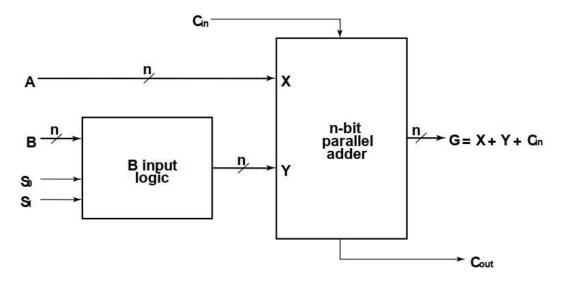
- Arithmetic circuit design
 - Decompose the arithmetic circuit into:
 - An n-bit parallel adder
 - A block of logic that selects four choices for the B input to the adder
- There are only four functions of B to select as Y in $G = A + Y + C_{in}$:

$$C_{in} = 0$$
 $C_{in} = 1$

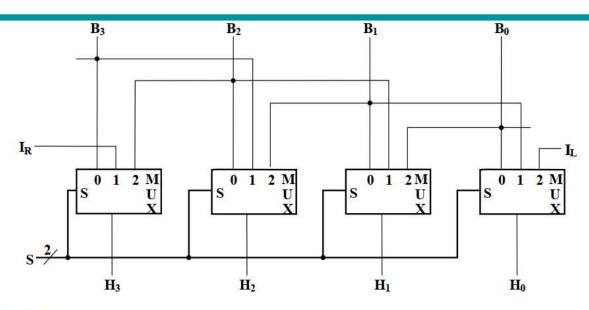
0 G = A

G = A + 1

B G=A+B


G = A + B + 1

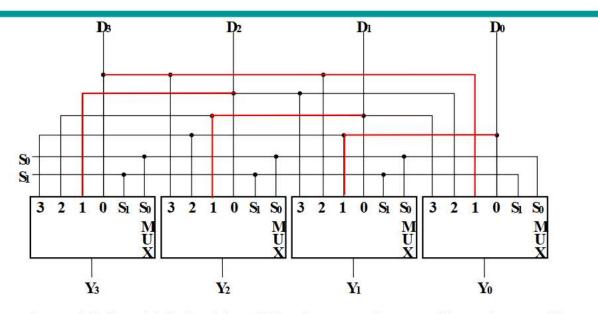
B G=A+B


 $G = A + \overline{B} + 1$

G = A - 1

G = A

4-Bit Basic Left/Right Shifter


- Serial Inputs:
 - I_R for right shift
 I_L for left shift

Shift Functions:

$$(S_1, S_0) = 00$$
 Pass B unchanged

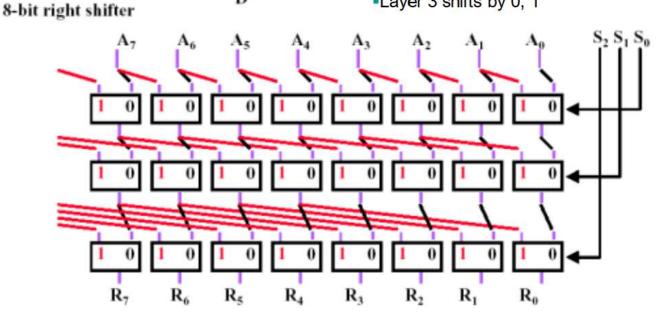
- 01 Right shift
- 10 Left shift
- 11 Unused

Barrel Shifter

- A rotate is a shift in which the bits shifted out are inserted into the positions vacated
- The circuit rotates its contents left from 0 to 3 positions depending on S:

S = 00 position unchanged

S = 10 rotate left by 2 positions


S = 01 rotate left by 1 positions

S = 11 rotate left by 3 positions

Combinational Shifter from MUXes

Basic Building Block sel -

- •- Example 8-bit:
 - Layer 1 shifts by 0, 4
 - Layer 2 shifts by 0, 2
 - Layer 3 shifts by 0, 1

- Large barrel shifters can be constructed using:
 - Layers of multiplexers
 - •2 dimensional array circuits designed at the electronic level