University Of Diyala
College Of Engineering
Department of Computer Engineering

Digital System Design 11
Asynchronous Sequential Logic
Part 11

Dr. Yasir Al-Zubaidi
Third stage
2021

Outline

* Asynchronous Sequential Circuits

* Analysis Procedure

* Circuits with Latches

* Design Procedure

* Reduction of State and Flow Tables
* Race-Free State Assignment

* Hazards

* Design Example

Design Procedure

1. Obtain a primitive flow table from the given design specifications
2. Reduce the flow table by merging rows in the primitive flow table

3. Assign binary state variables to each row of the reduced flow to
obtain the transition table.

4. Assign output values to the dashes associated with the unstable states
to obtain the output map.

5. Simplify the Boolean functions of the excitation and output variables
and draw the logic diagram

Primitive Flow Table

* Design example: gated latch
* Two Input (G = gate , D = Data).

* One output 1s Q , the gated latch is a memory element that;
» Accept the value of D when G=1
 Retain this value after G goes to 0 (D has no effects now)

 Obtain the flow table by listing all possible states.

* Dash marks are given when both inputs change simultaneously

* Outputs of unstable states are don’t care

Input Output
State D G Q Comments

a 0 1 0 D=Q because G=1
b 1] H 1] D=Q because G=1
[0 0 0 After statesa or d

d 1 0 0 After state ¢

e 1 0 1 After states b or f

f 0 0 1 After state e

DG
00 0l 11 10
[':_‘!.-In bl_ -
-,— | a, I':Ef], 1] e,
{_'E:::.n ﬂp_ T d|_
f, b,-|(e),1
'..:__,"] a, &

Reduce the Flow Table
I

= Two or more rows can be merged into one row if there are
non-conflicting states and outputs in every columns

= After merged intoonerow: , ., N
= Don’t care entries are al c-l@o]b.-]-. bi|<siz | wi JN]
overwritten = 1 Ji-llesle
= Stable states and output _ '

values are included d|e=|==[b=|@0] @) a-]|--]e.-

= A common symbol is given () States that ave coudidites for marahis

to the merged row - -
« Formal reduction procedure > e
is given in next section “°¢["|@°| P[0 @ @O0 b0
bef (1] a,-|(b)1|(e) b ((B)1]| a,.-|(B)1](b)

{b) Reduced table (two alternatives)

9-29

Transition Table and Logic Diagram

oG = Assign a binary value to each state
00 0L 11 10 to generate the transition table
0 0 { 0 = a=0, b=1 in this example

= Directly use the simplified Boolean

Ll R[4 function for the excitation variable Y

@)Y =DG+Gy = An asynchronous circuit without latch is
produced
DG

00 ol 11 10 D }
0 0 1 0
1 0 1 1 G 'l>.o 3

9-30

Implementation with SR Latch

(b) Logic diagram

DG DG
00 01 11 10 00 o 11 10
¥ ¥
772 A
0] 4] | 1 | 0 0| X F(} 0 X
| X 0 l,\XJ.I X 1 0 LI ‘ i 0
- Listed according to
SRS Kope _ the transition table
a) Maps for Sand R v . ”
NP and the excitation
, p table of SR latch
> p—e—— QO
e
DD

9-31

Outputs for Unstable States

|
= Objective: no momentary false outputs occur when the

circuit switches between stable states

= If the output value is not changed, the intermediate
unstable state must have the same output value
= 0 > 1 (unstable) > 0 (X)

d/_\ R
. 0> 0 (unstable) >0 (0) «|@.0 b, 5’ o (o)
=« If the output value changed, A
: : b|ec,-|®)o0 x| o
the intermediate outputs L
are don't care oV T
(9
= It makes no difference when D D
the output change occurs d | a—-|(d),1 X [1
(a) Flow table (b) Output assignment

9-32

Outline

* Asynchronous Sequential Circuits

* Analysis Procedure

* Circuits with Latches

* Design Procedure

* Reduction of State and Flow Tables
* Race-Free State Assignment

* Hazards

* Design Example

J State Reduction

= Two states are equivalent if they have the same output
and go to the same (equivalent) next states for each
possible input

Present | Next State | Output

« Ex: (a,b) are equivalent State | x=0 x=1|x=0 x=1
(c,d) are equivalent a C b 0 1
= State reduction procedure | P | d : 2 ;
is similar in both sync. & ; : R —

async. sequential circuits
= For completely specified state tables:
- use implication table
« For incompletely specified state tables:
- use compatible pairs

Implication Table Method (1/2)

= Step 1: build the implication chart

Present | Next State | Output
State | x=0 x=1|x=0 x=1
a d b 0 0
b @ a 0 0
C g f 0 1
d a d 1 0
a a d 1 0
f C b 0 0
g a e 1 0

b

c

d.e/| +— a=b iff d=e
b+c since outputs
X b 4 .
are not equivalent
x| % dand e are
L~
=1~ The same
x X v
c,e X
c,d X a.b P X
% X X |d,e/|d, e/ X

9-35

| Implication Table Method (2/2)

“'a Step 2: delete the node with unsatisfied conditions
= Step 3: repeat Step 2 until equivalent states found

s b /~ a=f because c»d equivalent states :

e L (a,b) (d.e) (d.g) (e.9)

. " #f because cxe % ~ 7

f ’/- d==e == g
4 7[‘~‘/ X Present | Next State | Output
. /K /} al State | x=0 x=1|x=0 x=1
+‘ J i [a d a | 0 0
fle,dx ;:;;x % ¥ X C d f 0 1
- _—— d a d 1 0
s 7

#| x| x| xfdeelided] x f c a | 0 o0

a b ¢ d e f *Reduced State Table* .35

Merge the Flow Table

I
= The state table may be incompletely specified

= Some next states and outputs are don't care

= Primitive flow tables are always incompletely specified
= Several synchronous circuits also have this property

= Incompletely specified states are not “equivalent”
« Instead, we are going to find “compatible states
« Two states are compatible if they have the same output
and compatible next states whenever specified
= Three procedural steps:
= Determine all compatible pairs
» Find the maximal compatibles

= Find a minimal closed collection of compatibles
9-37

Compatible Pairs

|
= Implication tables are used to find compatible states
« We can adjust the dashes to fit any desired condition

= Must have no conflict in the output values to be merged

0o 01 11 10

compatible pairs :

alec,-|(a)o]b,

bl (a,b) (a,c) (a,d)
b|-,-|a.,- |@B)1] e.- (b.e) (b.f)
~ A o]l e ed
c /\E-_I.U Q= | =iy | d
d W d,e *
output p i Il il > output e |e.f x L€ X "
conflict! |, |_ _|, |4 K conflict! ' Ve ©
il d, ey
Fle x|l V] Xle sy
\jl a, ; e, &S %
A a b ¢ d e

{a) Primitive flow table (b) Implication table 9-38

Maximal Compatibles

|
= A group of compatibles that contains all the possible

combinations of compatible states
= Obtained from a merger diagram
= A line in the diagram represents that two states are compatible

= Nh-state compatible - n-sided fully connected polygon

= All its diagonals . -
connected i N e b
fi. al ;
= Not all \
maximal ol L
compatibles | __
are necessary <" & P p/
— =
(n) Maximal compatible: {b) Maximal compatible;

(a.b.) (a,c, d) (b.e.f) (a.b.e fy (b, c.) (e, d) (g) 9-39

Closed Covering Condition

B
= The set of chosen compatibles must cover all the states
and must be closed
= Closed covering

= The closure condition is satisfied if P ey
= There are no implied states Fd
=« The implied states are included J
within the set (
= Ex: if remove (a,b) in the right \]
= (a,c,d) (b,e,f) are left in the set \ /
= All six states are still included

= No implied states according to Rt ey
its implication table 9-23(b) d

(a) Maximal compatible:
(a,b,)) (a.c, d) (b.e.f)
9-40

Closed Covering Example

by

(a) Implication table

(b) Merger diagram

Compatibles {a,b) } (a, d) (b c) {c,d, e)
Implied states (b c) ¥ o (d,e) (a,d,)
tbc)

(c) Closure table

*(a,b) (c,d,e) > (X)
implied (b,c) is not
included in the set

* better choice:
(a,d) (b,c) (c,dse)
all implied states
are included ¢4

Outline

* Asynchronous Sequential Circuits

* Analysis Procedure

* Circuits with Latches

* Design Procedure

* Reduction of State and Flow Tables
* Race-Free State Assignment

* Hazards

* Design Example

Race-Free State Assignment

Objective: choose a proper binary state assignment to
prevent critical races

Only one variable can change at any given time when
a state transition occurs

States between which transitions occur will be given
adjacent assignments

« Two binary values are said to be adjacent if they differ in only

one variable

To ensure that a transition table has no critical races,
every possible state transition should be checked

= A tedious work when the flow table is large

« Only 3-row and 4-row examples are demonstrated

9-43

3-Row Flow Table Example (1/2)

= Three states require two binary variables
= Outputs are omitted for simplicity
= Adjacent info. are represented by a transition diagram

= a and c are still not adjacent in such an assignment !!
« Impossible to make all states adjacent if only 3 states are used

Xy x2
00 01110 g e
II/'—“\"'.—N r\}--—-\l
a ,\a ':t b c il a}
— = ---» bhasa
b ar\?’?) r'/ﬁﬂwc transition
%\ . '.. P{.’
il B toc
P N ;J,_\\
c F\I_IM[" ?: |r\\f /; IL\-‘.'.'-/j c=11

(a) Flow table (b) Transition diagram Q.44

3-Row Flow Table Example (2/2)

A race-free assignment can be obtained if we add an
extra row to the flow table
= Only provide a race-free transition between the stable states

The transition from a to ¢ must now go through d
« 00 2> 10 > 11 (no race condition)

X1x2 X1X2
oo o 1110 o0 o1 11 10
— gy — —
(a)| & d |(a) a =00 b =01 a=00 | (00)f o1 10 @)
a (/;\ ()| - b-o1| o0 G}T Y o) 1
. N/ 7 k S
d c_} "’j *f,\ c=11| 10 Q}) @\; {_;1_ ij'
Y. JY — —
a . c 2 d-=10 c =11 d=10] oo | -3 1 f -3
5 - 8 -

don't care but cannot be 10 | ¢
(cannot stable) 9-45

4-Row Flow Table Example (1/2)

= Sometimes, just one extra row may not be sufficient to
prevent critical races
= More binary state variables may also required
= With one or two diagonal transitions, there is no way of
using two binary variables that satisfy all adjacency

00 0l 11 10

a b La) d fﬂn} a b

T -

Y

o~ —

f ' 'l
\ \

da } c d (s

>

L

(a) Flow table (b) Transition diagram

9-46

4-Row Flow Table Example (2/2)

Y1V2 00 01 11 0

0001110 UDD:;:IJ@E@%
Y3

’ i ’ “HE 001=b @ d @ a | still has
8 A only 4
: \.E +d ‘h{,’ Oll=¢ @ g b @ stable
states

0o0=¢g | - [a | - -

110 - S . -

m=f| ¢ | - | - ,:

~—
101 =d 5 @ d)| f
d=101 \ f=111! c=o11
oo wo=e | - | - | 4 | -

(b) Transition diagram 9-47

= Multiple-row method is easier

= May not as efficient as in above
shared-row method

= Each stable state is duplicated

with exactly the same output

= Behaviors are still the same
= While choosing the next states,

choose the adjacent one

¥1
0
can be used <« --
to any 4-row 1
flow table

00

y2y3
01

11

10

ay

by

1

d

<2

dy

a3

by

(a) Binary assignment

000 = ay

111 = ay

001 = by

110 = by

011 =

100 = ¢9

010 = dy

101 = d

Multiple-Row Method

01 11 10
~— P
by (az) & |(a)
P, —~
g'\bQ dy (b]) ap
N\ s
)| 4 |G| =
e
@ as b] I\CD
&= |@
N f‘_“x\
= @f’l [“\dlf o
s
{b) Flow table

9-48

Outline

* Asynchronous Sequential Circuits

* Analysis Procedure

* Circuits with Latches

* Design Procedure

* Reduction of State and Flow Tables
* Race-Free State Assignment

* Hazards

* Design Example

Hazards

I

= Unwanted switching appears at the output of a circuit
=« Due to different propagation delay in different paths

= May cause the circuit to mal-function
»« Cause temporary false-output values in combinational circuits
»« Cause a transition to a wrong state in asynchronous circuits
= Not a concern to synchronous sequential circuits

= Three types of hazards:

1 1 1

(a) Static 1-hazard (b) Static 0-hazard (¢) Dynamic hazard
9-50

Circuits with Hazards

| = Static hazard: a momentary output change when no

output change should occur

« If implemented in sum of products:
= ho static 1-hazard > no static 0-hazard or dynamic hazard

= Two examples for static 1-hazard:

x1=1

| e
1)—1+0

x3] @10
() —=
DC ||

o 1D

9 0—»1

|

.‘[3=1

©

(a) AND-OR circuit

1

=¥

©0

.I]=1

D_

Q1 >0

:

1 @

D+
[>o—

—

13=1

2}

(b) NAND circuit

9-51

Hazard-Free Circuit

|
= Hazard can be detected = A e

Xy x;

by inspecting the map 0 b)

= The change of input | G T 19D

results in a change of
covered product term

- Hazard exists Ly D
- Ex: 111 > 101 in (a) T

= To eliminate the hazard, D— —j P
enclose the two minterms |7)

in another product term j
= Results in redundant gates J Gioandanii

9-52

Remove Hazard with Latches

X1

« Implement the asynchronous circuit with SR latches can

also remove static hazards

= A momentary 0 has no effects to the S and R

inputs of a NOR latch

= A momentary 1 has no effects to the S and R

inputs of a NAND latch

-
)

a) Logic diagram

Replaced
by a latch

Y= 111 t x's

Hazar'ds
exist |l

=

0

10

(0)

"l /7. ™
/ 1)
A & LY &

(b) Transition table

o B

01 11

(c) Map for ¥

9-53

Implementation with SR Latches

B
= Given:
S=AB+CD
R=AC
= For NAND latch, use
complemented inputs
« S = (AB + CD)’
= (AB)’(CDY’
= R =(AC)

= Q=(QS)
= [Q'(AB)(CD)T

- Two-level circuits

A
B

C

(this is the output we want)

(b)

9-54

Essential Hazards

|

= Besides static and dynamic hazards, another
type of hazard in asynchronous circuits is called
essential hazard

= Caused by unequal delays along two or more
paths that originate from the same input

= Cannot be corrected by adding redundant gates

= Can only be corrected by adjusting the amount
of delay in the affected path
»« Each feedback path should be examined carefully !!

9-55

Outline

* Asynchronous Sequential Circuits

* Analysis Procedure

* Circuits with Latches

* Design Procedure

* Reduction of State and Flow Tables
* Race-Free State Assignment

e Hazards

* Design Example

Recommended Design Procedure

|
1. State the design specifications

2. Derive a primitive flow table

3. Reduce the flow table by merging the rows
4. Make a race-free binary state assignment
5. Obtain the transition table and output map
6. Obtain the logic diagram using SR latches

9-57

\ Primitive Flow Table

rc
= Design a negative-edge-triggered 0001 11 10
T ﬂip'ﬂop a |- | F, c_fu Ol &,
= Two inputs: T(toggle) and C(clock) 1 =
? g - iy 2
= T=1: toggle, T=0: no change 3 ~
= One output: Q e | == | w2 l@En1] a.-
Input Output il e a.- |l o
State T C Q Comments
a 1 1 0 Initial output is 0 : l@.0] 7 .
b i 0 1 After state a i Lt '
C 1 1 1 Initial output is 1 ile-lDola.-]-.-
d 1 0 0 After state c o
e 0 0 0 After states d or f e leayil ool =2l s
f 0 1 0 After states e or a
g 0 0 1 After states bor h h ol e =1 - -
h 0 1 1 After states g or ¢ S ' " | o-58

| Merging the Flow Table

Compatible pairs: o T
(@.f) (b.g) (b.h) (ch) ~
o) (dHEhH@h |

a,cx ' ?r
Maximal compatible set: /
%|b,dx /
(a.f) (b.g.h) (c.h) (d.e.f) \ A
b,dX Xl|la,cX a b c d - : =
e, 0%
b X b»ﬁ‘x LR v ol £ 1 10
IR 200
1| e~ |r1
fhx| /lbax|p8% «|pE X il i
hl gt |(BLL et | 4 c|b cvt ke | 4
f.hx d,ex|e,gx o
a,cx v Ve, rx|f hx X v Pt _ _ - . -
Gefllero (N0 | e,- |(d)0 d |(d)0 |(d).0 | a,- |0
a b C d ¢ f g =1 -
(a) (b)

9-59

State Assignment & Transition Table

= No diagonal lines in the transition diagram

- No need to add extra states

a =00 b =01 o
- a = ()
b =01l

c=11

d;:l;(:- c=11 d=10

Fig. 9-43 Transition Diagram

TC
0 o0 1 10
10 |/ 'm':‘ _f'tmll"j' 01
(o) (m)] 1 [(on)
o |[(n)|(1)]| 10
(10)| (10)| o0 |(10)

(a) Transition table

Y1y2
00

01

10

rc
00 01 11 10

1 1 1 1
1 1 | X
0 0 0 0

(b) Output map Q = y,

9-60

i Logic Diagram

Yy
00

o1

10

yiva

o1

W 01 11 10
1,00 o0
o | o (1] o
0 X le X
X\| x| o | X

(@S =pnTC+y, T

TC
0 01 11 10
0 0] 1
x| x| x|x
X X X 0
ol oflo| o
()5 -y 7C

Tc
yiy2 0o m 11 10

00| 0 X |X)| X

o1 |[’x | x| o| x

mili)ofo] o

10| 0 0|1 0

(YR =y TC +y3TC

Tc
y1¥a 0 o 1 10

Wl X | X| X |0

01| 0] 0 0

11| 0] 0 1

I ¢ X X X

¥y

9-61

