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Image Processing 

Lecture 5 
FREQUENCY DOMAIN PROCESSING 
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Spatial Frequency 
¢  Spatial frequency measures how fast the image intensity 

changes in the image plane 

¢  Spatial frequency can be completely characterized by the 
variation frequencies in two orthogonal directions (e.g., 
horizontal and vertical) 
l      : cycles/horizontal unit distance 
l      : cycles/vertical unit distance 

l  Horizontal and vertical frequency can be combined and 
expressed in terms of magnitude and angle: 
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Spatial Frequency 
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2D Sinusoidal 
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Angular	  Frequency	  

¢  The	  previous	  de-inition	  does	  not	  take	  into	  account	  the	  
viewing	  distance.	  	  

¢  More	  useful	  measure	  is	  the	  angular	  frequency,	  	  
expressed	  in	  	  cycles	  per	  degree:	  
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Angular	  Frequency	  

¢  For	  the	  same	  picture	  and	  picture	  height	  (h),	  angular	  
frequency	  increases	  with	  distance.	  

¢  For	  -ixed	  viewing	  distance	  (d),	  larger	  displays	  give	  less	  
angular	  frequency.	  

fθ =
fs
θ
=
πd
180h

fs (cpd)
fs : cycles per picture height
fθ : cycles per degree

Resolu1on	  
¢  The	  ability	  to	  seperate	  two	  adjacent	  
pixels,	  that	  is,	  resolve	  the	  details	  in	  	  test	  
grating.	  	  

¢  This	  ability	  depends	  on	  several	  factors	  
such	  as:	  
l Picture	  (monitor)	  height	  (h)	  	  
l Viewer’s	  distance	  from	  monitor	  (d)	  
l The	  viewing	  angle	  (theta)	  
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Viewing	  Distance	  

20/20 vision  
= 1 min of arc 
(1/60 degrees) 

Optimum viewing distances: 
•  SDTV = 7.1 x PH (picture height) 
•  HDTV = 3.1 x PH  

Horizontal	  Viewing	  Ranges	  at	  
Op1mum	  Distances	  
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Contrast	  Sensi1vity	  vs.	  Spa1al	  
Frequency	  of	  HVS	  

¢  Contrast	  sensitivity	  
function	  (CSF)	  for	  
various	  retinal	  
illuminance	  values	  

¢  We	  can	  not	  perceive	  
beyond	  a	  certain	  spatial	  
frequency	  (50cpd).	  	  	  

Spa1al	  Frequency	  for	  Peak	  
Contrast	  Sensi1vity	  

fθ =
fs
θ
=
π (3.1)
180

fs =
fs
18
(cpd)

9Td curve peaks at  fθ = 4cpd →  fs = 72cpPH→15 lines per cycle
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Implica1ons	  and	  Applica1ons	  

¢  The	  HVS	  is	  more	  sensitive	  to	  low	  spatial	  frequencies	  (i.e.,	  
luminance	  changes	  over	  a	  large	  area)	  than	  high	  spatial	  
frequencies	  (i.e.,	  rapid	  changes	  within	  small	  areas),	  which	  is	  an	  
often-‐exploited	  aspect	  of	  most	  image	  compression	  techniques.	  	  

¢  The	  HVS	  is	  more	  sensitive	  to	  high	  contrast	  than	  low	  contrast	  
regions	  within	  an	  image,	  which	  means	  that	  regions	  with	  large	  
luminance	  variations	  (such	  as	  edges)	  are	  perceived	  as	  
particularly	  important	  and	  should	  therefore	  be	  detected,	  
preserved	  and/or	  enhanced.	  	  
¢  Hence,	  may	  discard	  redundant	  high	  spatial	  frequency	  

content	  while	  preserving	  edges	  

Note:	  Importance	  of	  Edges	  

¢  Our	  visual	  system	  tends	  to	  overshoot	  and	  
undershoot	  at	  the	  boundaries	  of	  regions	  with	  
different	  intensities	  (recall	  Mach	  bands).	  	  

¢  Explains	  the	  ability	  to	  seperate	  objects	  even	  in	  
dim	  light.	  	  

556 Human visual perception

(a) (b) (c)

Figure A.14 Mach bands.

human subject (Figure A.15). The observer’s field of vision is filled mostly by the surround
luminance (Y0). In the central area, the left portion of the circle has a test luminance value
(Y ) whereas the right half shows a slightly increased value (Y +�Y ). Subjects are asked
to inform at which point the difference between the two halves become noticeable 3 and the
corresponding value of Y and �Y are recorded. The process is repeated for a wide range
of luminance values.

Experiments of this type have concluded that over a range of intensities of about 300:1,
the discrimination threshold of vision is approximately a constant ratio of luminance. If
one plots log(�Y/Y ) as a function of Y , it will show an interval of more than two decades
of luminance over which the discrimination capability of vision is about 1% of the test
luminance level. In other words, within that range, human vision cannot distinguish two
luminance levels if the ratio between them is less than approximately 1.01.

Figure A.15 Contrast sensitivity test pattern.

In vision science, contrast sensitivity is also measured using a spatial grating test pattern.
The resulting plot is called contrast sensitivity function (CSF) and it represents the contrast
sensitivity as a function of the spatial frequency (in cycles/degree). Figure A.16 shows a
family of curves, representing different adaptation levels – from very dark (0.0009 Td) to
very bright (900 Td), where 9 Td is a representative value for electronic displays4. The 9
Td curve peaks at about 4 cycles/degree. Below that spatial frequency the eye acts as a

3This concept of Just Noticeable Difference (JND) is also used in many other psychophysics experiments.
4A Troland (Td) is a unit of retinal illuminance equal to object luminance (in cd/m2) times pupillary aperture
area (in mm2).
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Note:	  Importance	  of	  Edges 

15 

Our	  visual	  system	  groups	  wavelengths	  of	  a	  rainbow	  to	  form	  distinct	  
color	  bands.	  It	  draws	  arti-icial	  lines	  to	  separate	  one	  color	  from	  another.	  

Frequency 
Representation 
of Images 

16 
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Signal Representation Using 
Sinusoids 

All periodic signals can be represented as a sum of sinusoids. 

Square Wave Example 

18 
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2D Sinusoidal Images 

Image Example 
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Assumed Periodicity for Images 

21 

Fundamental Period   N = image size

Fundamental Frequency  ω =
2π
N

Sinusoidal Frequencies   kω,   k ∈ Ζ

Signal Synthesis with Sinusoidals 

22 
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2D Fourier Transform 

23 

MATLAB	  Example	  

I = imread('Figure11_04_a.png'); 
Id = im2double(I); 
ft = fft2(Id); 
ft_shift = fftshift(ft); 
imshow(log(1 + abs(ft_shift)), []) 

x 

y 
u 
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Transform	  Domain	  Processing	  

¢  Certain image processing tasks (e.g., filtering, compression) 
can be better performed in the transform domain. 

Separability	  of	  Fourier	  
Transform	  

¢  The	  Fourier	  Transform	  is	  separable,	  i.e.,	  
the	  FT	  of	  a	  2D	  image	  can	  be	  computed	  by	  
two	  passes	  of	  the	  1D	  FT	  algorithm,	  once	  
along	  the	  rows	  (columns),	  followed	  by	  
another	  pass	  along	  the	  columns	  (rows)	  of	  
the	  result.	  	  
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Fourier 
Transform 
Properties 

27 

Fourier Spectrum of a 1D 
Sinusoidal 

28 
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Fourier Transform of a 2D 
Sinusoidal 

Fourier	  Transform	  of	  a	  Stripe	  	  

original  
image 

Fourier  
Transform  

Fourier transform 
Along the vertical axis 
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Effect of Scaling and Rotation 

31 

Effect	  of	  Rota1on	  

¢  If	  an	  image	  is	  rotated	  
by	  a	  certain	  angle	  θ,	  
its	  2D	  FT	  will	  be	  
rotated	  by	  the	  same	  
angle.	  

220 FREQUENCY-DOMAIN FILTERING

(a) (b)

(c) (d)

Figure 11.5 Original image (a) and its 2D FT spectrum (b); Rotated image (c) and its 2D FT
spectrum (d).

11.3 LOW-PASS FILTERING (LPF)

Low-pass filters attenuate the high frequency components of the Fourier Transform of
an image, while leaving the low frequency components unchanged. The typical overall
effect of applying a low-pass filter (LPF) to an image is a controlled degree of blurring.
Figures 11.6 and 11.7 show examples of applications of LPFs for smoothing of false
contours (Section 5.4.3) and noise reduction4, respectively.

11.3.1 Ideal LPF

An Ideal low-pass filter enhances all frequency components within a specified radius (from
the center of the FT), while attenuating all others. Its mathematical formulation is given as
follows:

HI(u, v) =

⇢

1 if D(u, v)  D0

0 if D(u, v) > D0
(11.20)

4We shall discuss noise reduction in more detail in Chapter 12.

Image            Fourier Transform 
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Linearity	  

FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION 219

F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.

Transla1on	  
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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Periodicity	  
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.Symmetry	  

¢  Conjugate symmetry: 

 
where: 

 
i.e., if: 
 
then: 
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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and
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[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:
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and
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Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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Frequency-‐Domain	  Filtering	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  

Mathema1cal	  founda1on	  
¢  Convolution	  theorem	  

214 FREQUENCY-DOMAIN FILTERING

11.1 INTRODUCTION

This chapter builds upon the ideas introduced in Section 2.4.4, which state that some
image processing tasks can be performed by transforming the input images to a different
domain, applying selected algorithms in the transform domain, and eventually applying
the inverse transformation to the result. In this chapter we are particularly interested in
a special case of operations in the transform domain, which we call frequency-domain
filtering. Frequency-domain filters work by following a straightforward sequence of steps
(Figure 11.1):

1. The input image is transformed to a 2D frequency-domain representation using the
2D Fourier Transform (FT).

2. A filter of specific type (e.g., ideal, Butterworth, Gaussian) and behavior (e.g., low-
pass, high-pass) is specified and applied to the frequency-domain representation of
the image.

3. The resulting values are transformed back to the 2D spatial domain by applying the
inverse 2D Fourier Transform, producing an output (filtered) image.

Figure 11.1 Frequency-domain operations.

The mathematical foundation of frequency domain techniques is the convolution theo-
rem. Let g(x, y) be an image obtained by the convolution1 (denoted by the ⇤ symbol) of
an image f(x, y) with a linear, position invariant operator h(x, y), that is,

g(x, y) = f(x, y) ⇤ h(x, y) (11.1)

From the convolution theorem, the following frequency-domain relation holds:

G(u, v) = F (u, v)H(u, v) (11.2)

where G, F and H are the Fourier transforms of g, f and h, respectively.

1Two-dimensional discrete convolution was introduced in Section 10.2.2.
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Many image processing problems can be expressed in the form of Eq. (11.2). In a noise
removal application, for instance, given f(x, y), the goal, after computing F (u, v), will be
to select H(u, v) such that the desired resulting image,

g(x, y) = F�1
[F (u, v)H(u, v)] (11.3)

where F�1 is the inverse 2D Fourier Transform operation, exhibits a reduction of the
noisy contents present in the original image f(x, y). For certain types of noise, this result
could be achieved using a low-pass Butterworth filter (Section 11.3.3), for example.

There are two options for designing and implementing image filters in the frequency
domain using MATLAB and the IPT:

1. Obtain the frequency domain filter response function from spatial filter convolution
mask. The IPT has a function that does exactly that: freqz2. Figure 11.2 shows
examples of such response functions for the 3⇥3 average filter described by Eq.( 10.9)
and the 3⇥ 3 composite Laplacian sharpening filter described by Eq.( 10.16).

2. Generate filters directly in the frequency domain. In this case a meshgrid array (of
the same size as the image) is created using the MATLAB function meshgrid. This
is the method used in the Tutorials in this chapter.

(a) (b)

Figure 11.2 Two examples of response functions for frequency-domain filters: (a) low-pass filter
equivalent to a 3 ⇥ 3 average filter in the spatial domain; (b) high-pass filter equivalent to a 3 ⇥ 3
composite Laplacian sharpening filter in the spatial domain.

11.2 FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION

The Fourier Transform (FT) is a fundamental tool in signal and image processing2. In
this section we discuss the mathematical aspects of 2D transforms in general, and then
introduce the 2D FT and its main properties.

2A complete, detailed analysis of the FT and associated concepts for 1D signals is beyond the scope of this text.
Please refer to the “Learn more about it” section for useful pointers.

Inverse	  2D	  Fourier	  Transform	  (FT)	  

FT	  

operatorinvariant position  linear, a is  ),( yxh



10/24/13 

40 

Low-‐Pass	  Filtering	  (LPF)	  

¢  Low-‐pass	  -ilters	  attenuate	  the	  high	  frequency	  
components	  of	  an	  image,	  while	  leaving	  the	  low	  
frequency	  components	  unchanged.	  	  

¢  The	  typical	  overall	  effect	  of	  applying	  a	  low-‐pass	  
-ilter	  (LPF)	  to	  an	  image	  is	  a	  controlled	  degree	  of	  
blurring.	  	  

Low-‐Pass	  Filtering	  (LPF)	  
¢  Example	  of	  LPF	  for	  smoothing	  of	  false	  contours	  

¢  Example	  of	  LPF	  for	  noise	  reduction	  	  

LOW-PASS FILTERING (LPF) 221

(a) (b)

Figure 11.6 Example of using LPF to smooth false contours: (a) Original image; (b) Result of
applying a LPF.

(a) (b)

Figure 11.7 Example of using LPF for noise reduction: (a) Original image; (b) Result of applying
a LPF.

where D(u, v) =

p

(u2
+ v2) represents the distance between a point of coordinates

(u, v) and the origin of the 2D frequency plan, and D0 is a non-negative value, referred to
as the cutoff frequency (or cutoff radius).

Figure 11.8 shows the frequency response plot for an ideal LPF. Figure 11.9 shows an
example image and its Fourier spectrum. The rings in Figure 11.9(b) represent different
values for cutoff frequencies (D0): 8, 16, 32, 64, and 128.

Figure 11.10 shows the results of applying ideal low-pass filters with different cutoff
frequencies to the original image: lower values of D0 correspond to blurrier results. A
close inspection of Figure 11.10 shows that the filtered images are not only blurry versions
of the input image – an expected outcome, common to all low-pass filters –, but also exhibits
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Ideal	  Low-‐Pass	  Filtering	  

( )

radius) (cutofffrequency  cutoff:
origin andpoint  abetween 

 distance:),(

0

22

D

vuvuD +=

Rings denote s 
different cutoff 
frequencies 

Ideal	  	  
Low-‐Pass	  Filter	  

¢  Ideal	  LPF	  example	  
¢  Results	  are	  for	  cutoff	  

frequencies:	  	  
(b)	  8	  pixels	  
(c)	  16	  pixels	  
(d)	  32	  pixels	  
(e)	  64	  pixels	  
(f)	  128	  pixels	  	  

¢  There	  are	  noticeable	  ringing	  
artifacts	  due	  to	  the	  sharp	  
transition	  between	  passpand	  
and	  stopband.	  	  

Ringing 
artifact 
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Gaussian	  Low-‐Pass	  Filtering	  
¢  The	  width	  of	  the	  bell	  shaped	  

curve	  is	  controlled	  by	  the	  
parameter	  sigma,	  which	  is	  
equivalent	  to	  the	  cutoff	  
frequency.	  	  

¢  Lower	  sigma	  means	  more	  
strict	  -iltering.	  	  

¢  The	  smooth	  transition	  
between	  passband	  and	  
stopband	  guarantees	  that	  
there	  will	  be	  no	  noticeable	  
ringing	  artifacts	  in	  the	  output	  
image.	  	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  

Gaussian	  
Low-‐Pass	  Filter	  

¢  Gaussian	  LPF	  example	  for	  
various	  sigma:	  
l  (b)	  75	  
l  (c)	  30	  
l  (d)	  20	  
l  (e)	  10	  
l  (f)	  5	  	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  
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BuTerworth	  Low-‐Pass	  Filtering	  

¢  Behaviour	  is	  a	  function	  of	  
the	  cutoff	  frequency	  	  	  	  	  	  	  	  
and	  the	  order	  of	  the	  -ilter	  n.	  

¢  The	  steepness	  of	  the	  
transition	  between	  
passband	  and	  stopband	  is	  
controlled	  by	  n.	  

¢  Higher	  n	  corresponds	  to	  
steeper	  transitions.	  	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  

0D

BuTerworth	  
Low-‐Pass	  Filter	  

¢  Butterworth	  LPF	  	  
example	  for	  n	  =	  4	  and	  
various	  cutoff	  
frequencies:	  	  
l  (b)	  8	  pixels	  
l  (c)	  16	  pixels	  
l  (d)	  32	  pixels	  
l  (e)	  64	  pixels	  
l  (f)	  128	  pixels	  	  	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  
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Ideal	  High-‐Pass	  Filter	  

¢  Ideal	  HPF	  attenuates	  all	  frequency	  components	  within	  a	  
certain	  radius,	  while	  enhancing	  others.	  	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  

Gaussian	  High-‐Pass	  Filter	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  
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BuTerworth	  High-‐Pass	  Filter	  

By Oge Marques       Copyright © 2011 by John Wiley & Sons, Inc.   All rights reserved.  

High-‐Frequency	  Emphasis	  

(b)	  Second	  order	  Butterworth	  HPF	  with	  cutoff	  
freuency	  30	  pixels.	  	  
(c)	  High-‐frequency	  emphasis	  with	  a	  =	  0.5	  and	  b	  =	  1.	  	  	  
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Project 1.5 
Fourier Transform 
Due 31.10.2013 

91 

Ideal	  Low-‐Pass	  Filtering	  
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Project 1.5 

1.  Select an arbitrary NxM image. Let N denote the size of the smaller 
side of the image (usually the vertical side).  

2.  Find and display the luminance image (Y band) and its Fourier 
transform (in the logarithm domain). 

3.  Apply an ideal low pass filter of circular shape with diameter N/4 in 
the Fourier domain. Display the resulting image. 

4.  Apply an ideal low pass filter of square shape with the same support 
area as in Step 3 in the Fourier domain. Display the resulting image. 

5.  Apply an ideal low pass filter of diamond shape with the same 
support area as in Step 3 in the Fourier domain. Display the resulting 
image. 

6.  Calculate the RMSE values between the original luminance image 
and the images obtained in Steps 3, 4, and 5. 

7.  Compare the images obtained in Steps 3, 4, and 5, and the RMSE 
values obtained in Step 6 and comment on their differences. 

93 

Root Mean Squared Error 

RMSE = 1
L

s1[m,n]− s2[m,n]( )
n
∑

m
∑

2#

$
%
%

&

'
(
(

1
2

where L is the total number of pixels used 
in the above double summation. 
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¢ SAMPLING 
 

Next Lecture 
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