EE421/521 Image Processing

Lecture 5
FREQUENCY DOMAIN PROCESSING

Spatial Frequency \& HVS

Spatial Frequency

- Spatial frequency measures how fast the image intensity changes in the image plane
- Spatial frequency can be completely characterized by the variation frequencies in two orthogonal directions (e.g., hori£ontal and vertical)
- f_{x} : cycles/horizontal unit distance
- f_{y} : cycles/vertical unit distance
- Horizontal and vertical frequency can be combined and expressed in terms of magnitude and angle:

$$
\begin{aligned}
& f_{m}=\sqrt{\left(f_{x}^{2}+f_{y}^{2}\right)} \\
& \theta=\arctan \left(\frac{f_{y}}{f_{x}}\right)
\end{aligned}
$$

Spatial Frequency

(a)

(b)

Figure 2.1 Two-dimensional sinusoidal signals: (a) $\left(f_{x}, f_{y}\right)=(5,0)$; (b) $\left(f_{x}, f_{y}\right)=(5,10)$. The horizontal and vertical units are the width and height of the image, respectively. Therefore, $f_{x}=5$ means that there are five cycles along each row.
$s(x, y)=\sin (10 \pi x) \quad s(x, y)=\sin (10 \pi x+20 \pi y)$
$f_{m}=\sqrt{f_{x}^{2}+f_{y}^{2}} \cong 11$ cycles/unit length, $\theta=\arctan \left(f_{y} / f_{x}\right) \approx 64^{\circ}$

2D Sinusoidal

Angular Frequency

- The previous definition does not take into account the viewing distance.
- More useful measure is the angular frequency, expressed in cycles per degree:
$\theta=2 \arctan \left(\frac{h}{2 d}\right) \approx \frac{h}{2 d}($ radian $)=\frac{180 h}{\pi d}($ deg. $)$

Angular Frequency

$$
\begin{array}{ll}
f_{\theta}=\frac{f_{s}}{\theta}=\frac{\pi d}{180 h} f_{s}(c p d) \quad \begin{array}{l}
f_{s}: \text { cycles per picture height } \\
f_{\theta}: \text { cycles per degree }
\end{array}
\end{array}
$$

- For the same picture and picture height (h), angular frequency increases with distance.
- For fixed viewing distance (d), larger displays give less angular frequency.

Resolution

- The ability to seperate two adjacent pixels, that is, resolve the details in test grating.
- This ability depends on several factors such as:
- Picture (monitor) height (h)
- Viewer's distance from monitor (d)
- The viewing angle (theta)

Horizontal Viewing Ranges at Optimum Distances

Contrast Sensitivity vs. Spatial Frequency of HVS

- Contrast sensitivity function (CSF) for various retinal illuminance values
- We can not perceive beyond a certain spatial frequency (50cpd)

Spatial Frequency for Peak Contrast Sensitivity

9 Td curve peaks at $f_{\theta}=4 \mathrm{cpd} \rightarrow f_{s}=72 \mathrm{cpPH} \rightarrow 15$ lines per cycle

- The HVS is more sensitive to low spatial frequencies (i.e., luminance changes over a large area) than high spatial frequencies (i.e., rapid changes within small areas), which is an often-exploited aspect of most image compression techniques.
- The HVS is more sensitive to high contrast than low contrast regions within an image, which means that regions with large luminance variations (such as edges) are perceived as particularly important and should therefore be detected, preserved and/or enhanced.
- Hence, may discard redundant high spatial frequency content while preserving edges

Signal Representation Using Sinusoids

All periodic signals can be represented as a sum of sinusoids.

Square Wave Example

Signal Synthesis with Sinusoidals

$$
\begin{gathered}
x(t)=\sum_{k=0}^{\infty} a_{k} \cos (k \omega t)+\sum_{k=1}^{\infty} b_{k} \sin (k \omega t) \\
\cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \text { and } \sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right) \\
- \\
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega t}
\end{gathered}
$$

2D Fourier Transform

Discrete Fourier transform (DFT) of $f(x, y)$

Inverse discrete
Fourier transform (IDFT) of $F(u, v)$

Polar representation

Spectrum

Phase angle
$\begin{aligned} & \text { frequency domain } \\ & \downarrow \\ & F(u, v)\end{aligned}=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}$ $f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}$ $F(u, v)=|F(u, v)| e^{j(u, v)}$
$|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}$ $R=\operatorname{Real}(F) ; \quad I=\operatorname{Imag}(F)$ $\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]$

Separability of Fourier Transform

- The Fourier Transform is separable, i.e., the FT of a 2D image can be computed by two passes of the 1D FT algorithm, once along the rows (columns), followed by another pass along the columns (rows) of the result.

Fourier
 Transform Properties

Fourier Spectrum of a 1D Sinusoidal

Linearity

$$
\mathfrak{F}[a \cdot f 1(x, y)+b \cdot f 2(x, y)]=a \cdot F 1(u, v)+b \cdot F 2(u, v)
$$

Periodicity

$$
F(u, v)=F(u+M, v+N)
$$

Symmetry

- Conjugate symmetry:

$$
F(u, v)=F^{*}(-u,-v)
$$

where:
$F^{*}(u, v)$ is the conjugate of $F(u, v)$
i.e., if:

$$
F(u, v)=R(u, v)+j I(u, v)
$$

then:

$$
\begin{gathered}
F^{*}(u, v)=R(u, v)-j I(u, v) \\
|F(u, v)|=|F(-u,-v)|
\end{gathered}
$$

More on Symmetry

$$
\begin{aligned}
f(x, y) \text { real } & \Leftrightarrow F^{*}(u, v)=F(-u,-v) \\
& \Leftrightarrow R(u, v) \text { even; } I(u, v) \text { odd } \\
& \Leftrightarrow|F(u, v)| \text { even; } \phi(u, v) \text { odd }
\end{aligned}
$$

Average Value

$$
\bar{f}(x, y)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)=\frac{1}{M N} F(0,0)
$$

Parseval's Relation
 $$
\sum_{V} \sum_{V}|f(x, y)|^{2}=\sum \sum_{V}|F(u, v)|^{2}
$$

2-D Convolution \& DFT

Linear 2-D Convolution

$$
y[m, n]=\sum_{i} \sum_{j} h[m-i, n-j] x[i, j]
$$

1-D Convolution with Matrix Operations

1-D Circular Convolution

$$
y[m]=h[m] * x[m]=\sum_{i} h[m-i] x[i]
$$

1-D Circular Convolution as a Matrix Multiplication

$$
y[m]=h[m] * x[m]=\sum_{i=0}^{M-1} h[m-i] x[i]
$$

$$
\begin{array}{r}
Y=H X \\
{\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{M-2} \\
y_{M-1}
\end{array}\right]=\left[\begin{array}{ccccc}
h_{0} & h_{-1} & \ddots & h_{2} & h_{1} \\
h_{1} & h_{0} & h_{-1} & \ddots & h_{2} \\
\ddots & h_{1} & h_{0} & \ddots & \ddots \\
h_{-2} & \ddots & \ddots & \ddots & h_{-1} \\
h_{-1} & h_{-2} & \ddots & h_{1} & h_{0}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{M-2} \\
x_{M-1}
\end{array}\right]} \\
\text { Circulant matrix }
\end{array}
$$

1-D DFT as Matrix Multiplication

$$
\widetilde{X}=W X
$$

$$
\tilde{X}=\left[\begin{array}{c}
\widetilde{x}_{0} \\
\vdots \\
\widetilde{x}_{M-1}
\end{array}\right] \quad W=\left[\begin{array}{ccc}
W_{M}^{00} & \cdots & W_{M}^{0(M-1)} \\
\vdots & \ddots & \vdots \\
W_{M}^{(M-1) 0} & \cdots & W_{M}^{(M-1)(M-1)}
\end{array}\right] \quad X=\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{M-1}
\end{array}\right]
$$

DFT Diagonalizes any

 Circulant Matrix$$
\begin{aligned}
W & =W^{T}=W^{-1} \quad \Longrightarrow \quad \begin{array}{l}
\text { Columns and rows of } W \\
\text { are orthonormal }
\end{array} \\
\left(W^{T} H W\right)_{k l} & =\sum_{i} \sum_{j} W_{M}^{i k} H_{i j} W_{M}^{j l}=\sum_{j} \sum_{i} W_{M}^{i k} h_{i-j} W_{M}^{j l} \\
& =\sum_{j} \sum_{m} W_{M}^{(j+m) k} h_{m} W_{M}^{j l}=\sum_{m} h_{m} W_{M}^{m k} \sum_{j} W_{M}^{j k} W_{M}^{j l} \\
& =\widetilde{h}_{k} \delta_{k l} \\
& W^{T} H W=\operatorname{diag}\left(\widetilde{h}_{0}, \cdots, \widetilde{h}_{M-1}\right)
\end{aligned}
$$

Convolution in Space

 Product in DFT$$
\left.\left.\begin{array}{c}
\widetilde{Y}=W Y=W H X=(W H W)(W X) \\
=\operatorname{diag}\left(\widetilde{h}_{0}, \cdots, \widetilde{h}_{M-1}\right) \widetilde{X} \\
\Downarrow
\end{array}\right] \begin{array}{c}
\widetilde{y}_{0} \\
\vdots \\
\widetilde{y}_{M-1}
\end{array}\right]=\left[\begin{array}{ccc}
\widetilde{h}_{0} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \widetilde{h}_{M-1}
\end{array}\right]\left[\begin{array}{c}
\widetilde{x}_{0} \\
\vdots \\
\widetilde{x}_{M-1}
\end{array}\right] .
$$

Separable 2-D Filtering

Separable 2-D Filter

$y[m, n]=\sum_{i} \sum_{j} h[m-i, n-j] x[i, j]$
seperable $\Longrightarrow h[m, n]=h_{1}[m] h_{2}[n]$

Filtering the Rows

$$
\begin{aligned}
& \bar{x}[m, j]=\sum_{i} h_{1}[m-i] x[i, j] \\
& {\left[\begin{array}{ccc}
\bar{x}(0,0) & \cdots & \bar{x}(M-1,0) \\
\vdots & \ddots & \vdots \\
\bar{x}(0, N-1) & \cdots & \bar{x}(M-1, N-1)
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\left.\left.\begin{array}{ccc}
x(0,0) & \cdots & x(M-1,0) \\
\vdots & \ddots & \vdots \\
x(0, N-1) & \cdots & x(M-1, N-1)
\end{array}\right]\left[\begin{array}{ccc}
h_{1}(0) & \cdots & h_{1}(-1) \\
\vdots & \ddots & \vdots \\
h_{1}(1) & \cdots & h_{1}(0)
\end{array}\right] .\right] ~
\end{array}\right.
\end{aligned}
$$

Filtering the Columns

$$
y[m, \stackrel{\rrbracket}{n}]=\sum_{j} h_{2}[n-j] \bar{x}[m, \stackrel{\downarrow}{j}]
$$

$$
\left[\begin{array}{ccc}
y(0,0) & \cdots & y(M-1,0) \\
\vdots & \ddots & \vdots \\
y(0, N-1) & \cdots & y(M-1, N-1)
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
h_{2}(0) & \cdots & h_{2}(1) \\
\vdots & \ddots & \vdots \\
h_{2}(-1) & \cdots & h_{2}(0)
\end{array}\right]\left[\begin{array}{ccc}
\bar{x}(0,0) & \cdots & \bar{x}(M-1,0) \\
\vdots & \ddots & \vdots \\
\bar{x}(0, N-1)
\end{array}\right] & \cdots & \bar{x}(M-1, N-1)
\end{array}\right]
$$

Images and Filters as Matrices

$$
X=\left[\begin{array}{ccc}x(0,0) & \cdots & x(M-1,0) \\ \vdots & \ddots & \vdots \\ x(0, N-1) & \cdots & x(M-1, N-1)\end{array}\right] \quad \text { Circulant matrix }
$$

$H_{1}=\left[\begin{array}{ccc}h_{1}(0) & \cdots & h_{1}(-1) \\ \vdots & \ddots & \vdots \\ h_{1}(1) & \cdots & h_{1}(0)\end{array}\right]_{N \times N} \quad H_{2}=\left[\begin{array}{ccc}h_{2}(0) & \cdots & h_{2}(1) \\ \vdots & \ddots & \vdots \\ h_{2}(-1) & \cdots & h_{2}(0)\end{array}\right]_{M \times M}$
$Y=\left[\begin{array}{ccc}y(0,0) & \cdots & y(M-1,0) \\ \vdots & \ddots & \vdots \\ y(0, N-1) & \cdots & y(M-1, N-1)\end{array}\right]$

Result 1: 2-D Convolution with a Separable Filter as Matrix Multiplication

$$
\begin{gathered}
y[m, n]=\sum_{i} \sum_{j} h_{1}[m-i] h_{2}[n-j] x[i, j] \\
Y=H_{2}^{T} X H_{1}
\end{gathered}
$$

Result 2:

2-D DFT as Matrix Multiplication
$\operatorname{DFT}(x)=\widetilde{x}[k, l]=\sum_{m} \sum_{n} W_{M}^{k m} W_{N}^{l n} x[m, n]$

$$
=\sum_{n} W_{N}^{l n} \sum_{m} W_{M}^{k n} x[m, n] \longleftarrow \text { rows }
$$

$W_{M}^{k m}=e^{-j 2 \pi d m / M}$

$$
=\sum_{n} W_{N}^{\ln } \bar{x}[k, n] \longleftarrow \text { columns }
$$

$W_{N}^{l n}=e^{-j 2 \pi t n / M}$
$\sqrt{\square}$

$$
\widetilde{X}=W_{N} X W_{M}
$$

Result 3: 2-D Convolution with a Separable Filter as a Product of DFTs

$$
\begin{aligned}
\widetilde{Y} & =W_{N} Y W_{M}=W_{N}\left(H_{2}^{T} X H_{1}\right) W_{M} \\
& =\left(W_{N} H_{2}^{T} W_{N}\right)\left(W_{N} X W_{M}\right)\left(W_{M} H_{1} W_{M}\right) \\
& =\widetilde{H}_{2}^{T} \widetilde{X} \widetilde{H}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& H_{1} \text { is circulant } \\
& H_{2} \text { is circulant } \\
& \widetilde{H}_{1}=\operatorname{diag}\left(\begin{array}{lll}
\widetilde{h}_{1,0} & \cdots & \tilde{h}_{1, M-1}
\end{array}\right) \quad \widetilde{H}_{2}=\operatorname{diag}\left(\begin{array}{ccc}
\widetilde{h}_{2,0} & \cdots & \widetilde{h}_{2, N-1}
\end{array}\right) \\
& \widetilde{Y}_{k l}=\widetilde{h}_{1, l} \widetilde{h}_{2, k} \widetilde{X}_{k l}
\end{aligned}
$$

2-D Convolution with Matrix Operations

(Non-Separable Filters)

Lexicographical Ordering of Pixels

$$
Y=\left[\begin{array}{c}
y(0,0) \\
\vdots \\
y(0, N-1) \\
\vdots \\
y(M-1,0) \\
\vdots \\
y(M-1, N-1)
\end{array}\right]
$$

$X=\left[\begin{array}{c}x(0,0) \\ \vdots \\ x(0, N-1) \\ \vdots \\ x(M-1,0) \\ \vdots \\ x(M-1, N-1)\end{array}\right]$

Non-Separable Filter as a Matrix Multiplication

2-D Filter as a Block-Circulant Matrix

2-D Convolution with a Non-

 Separable Filter as a Product of DFTs

Frequency Domain Filtering

Frequency-Domain Filtering

Mathematical foundation

o Convolution theorem

$$
\begin{gathered}
g(x, y)=f(x, y) * h(x, y) \\
\downarrow \text { FT } \\
G(u, v)=F(u, v) H(u, v) \\
g(x, y)=\mathfrak{F}^{-1}[F(u, v) H(u, v)]
\end{gathered}
$$

Inverse 2D Fourier Transform (FT)
$h(x, y)$ is a linear, position invariant operator

Butterworth Low-Pass Filtering

- Behaviour is a function of the cutoff frequency D_{0} and the order of the filter n.
- The steepness of the transition between passband and stopband is controlled by n.
- Higher n corresponds to steeper transitions.

Ideal High-Pass Filter

- Ideal HPF attenuates all frequency components within a certain radius, while enhancing others.

$$
H_{I}(u, v)= \begin{cases}0 & \text { if } D(u, v) \leq D_{0} \\ 1 & \text { if } D(u, v)>D_{0}\end{cases}
$$

1. Select an arbitrary NxM image. Let N denote the size of the smaller side of the image (usually the vertical side).
2. Find and display the luminance image (Y band) and its Fourier transform (in the logarithm domain).
3. Apply an ideal low pass filter of circular shape with diameter N/4 in the Fourier domain. Display the resulting image.
4. Apply an ideal low pass filter of square shape with the same support area as in Step 3 in the Fourier domain. Display the resulting image.
5. Apply an ideal low pass filter of diamond shape with the same support area as in Step 3 in the Fourier domain. Display the resulting image.
6. Calculate the RMSE values between the original luminance image and the images obtained in Steps 3, 4, and 5.
7. Compare the images obtained in Steps 3, 4, and 5, and the RMSE values obtained in Step 6 and comment on their differences

Next Lecture

- SAMPLING

