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Quantization Examples

o Bi-level (black & white) image (fax)
s=0orf1

o 8-bit color image (photograph)
0<rgb=<255

o 10-bit color image (movie)
0<rgb<1023

o 12-bit intensity image (X-ray)
0<5=4095

o Multi-spectral image (satellite)
O0<ct1,c2...c/l<255




Effect of grey level resolution

2 bits 1 bit 0 bits 11
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Effect of reducing the gray-level resolution

Decreasing the gray-level resolution of a digital image may result in what
1s known as false contouring. This effect 1s caused by the use of an
insufficient number of gray levels in smooth areas of a digital image.

To tllustrate the false contouring effect, we reduce the number of
gray levels of the 256-level image shown in Figure 2.6(a) from 256 to 2.
The resulted images are shown in the figures 2.6(b) through (h). This can
be achieved by reducing the number of bits from k=7 to k=1 while

keeping the spatial resolution constant at 452374 pixels.
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We can clearly see that the 256-, 128-. and 64-level images are
visually identical. Howewver. the 32-level image shown in Figure 2.6(d)
has an almost imperceptible set of very fine ridgelike structures in arsas
of smooth gray levels (particularly in the skull).False contouring
generally is quite visible in images displayed using 16 or less uniformly

spaced gray levels. as the images in Figures 2.6(e) through (h) show.

(e) (€3 (=) (h)
Figure 2.6 (a) 452=<374_ 256-1evel mimage_ (b)-(h) Image displaved in 128_64_. 32_ 16. 8. 4. and

2 grav levels. while keeping the spanal resolution constant.



Images as Functions

o We can think of an image as a function, f, from R- to R:
flx, v) gives the intensity at position ( x, )

Realistically, we expect the image only to be defined
over a rectangle, with a finite range:

£ [a.b]x[c.d] = [0.1]

o A color image is just three functions pasted together.
\We can write this as a “vector-valued” function:
r(x.v) ]
Jx.v)=g(x.y)
b(x.v)




Image Representation
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Intensity Representation

(0,0) y

Y
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NB: There is no universally accepted convention or notation. Always check carefully!
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o Mathematical notation

flz.y) =

f(0,0) f(0.1)
f(1,0) f(1.1)

fIM —1,0) f(M-1,1)

Array Representation

FOM—1.N—1)



Array Representation

o MATLAB notation

Cf(1,1) £(1,2) - £(1,N) ]
£(2,1) £(2,2) --- £(2,N)
flp,q) = . . :

fOLD TR - TOLN)




Digital image representation

o Binary (1-bit) images
2D array, one bit per pixel, a 0 usually means “black” and a 1 means
“white”.
In MATLAB: binary images are represented using a logical array
of Os and 1s.
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Digital image representation

o0 Gray-level (8-bit) images
2D array, 8 bits per pixel, a 0 usually means “black” and a
255 means “white”.

In MATLAB: intensity images can be represented using
different data types (or classes): uint8,uintl6, or

By Oge Marques Copyright © 201 | by John Wiley & Sons, Inc. All rights reserved.




What is digital image?
" The image consists of
finite number of pixels

(f(x.y))

Every pixel Is an
intersection adals
between arow and a
column.

every pixel has
intensity 4és

f(4,3)= 123

Refers to a pixel existing on the
intersection between row 4 with
column 3, and its intensity is
123.

Royida A. Alhayali Lecture #1



Digital image representation

o Color images

RGB representation: each pixel is usually
represented by a 24-bit number containing
the amount of its Red (R), Green (G), and
Blue (B) components (8 bits per component)

Indexed representation: a 2D array
contains indices to a color palette (or look-
up table, LUT).



Digital image representation

(a) 24-bit
(true
color) RGB
image
(b)R

(c) G

(d)B

21\ 24=
16M colors s I
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Digital image representation

o0 Indexed color images: old hardware can not display
16M colors. Use a pointer to a color palette (color

map) . Typically 256 colors.

<90 il 00>
RLO 100 R3de
e T Gien G0
f08 &087 B0 3%
80> <77 <80»
1.00 w100 R3.00
.00 LOs? c:L.oo
E0.87 ®070 E0 37
«TT «R0 R0
R:1.00 F100 A6
G 87 wien Coton
Bo7c 209 POy
<~V <77 = v
R:1.00 w100 R
C100 Cos CLoo
0007 #3070 B0a7

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.




Mathematical representation of Digital Images

There are two categories of algebraic operations applied to images:

e Arithmetic

e Logic

These operations are performed on a pixel-by-pixel basis between two or

more images, except for the NOT logic operation which requires only one

image. For example. to add images I; and I> to create [I;:

Iy(x,y) = Iyfx,y) + I(x,v)

34 7
2 4 6
3+ 6

Royida A. Alhayali

4+ 6
4+ 2
24+3 445

6 6 6

355
7+ 6 9 10 13
5+5]= 7 6 11‘
6+ 5 5 9 11
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e Addition is used to combine the information in two images.
Applications include development of image restoration algorithms

for modeling additive noise and special effects such as image

morphing in motion pictures as shown in the figures below.

(a) Ornginal image (b) Gaussian noise (c) Addition of images

. . - . (a) and (b)
Image addition (adding noise to the image)
Royida A. Alhayali Lecture #2



(a) First Original (b) Second Original (c) Addition of images

(a) and (b)

Figure 3.3 Image addition (1mage morphing example)

e Subtraction of two images is often used to detect motion. For
example. in a scene when nothing has changed. the image resulting
from the subtraction is filled with zeros(black image). If something
has changed in the scene. subtraction produces a nonzero result at

the location of movement as shown in the figure below.
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(a) Ongmnal scene (b) Same scene at a later time

(¢) Subtracting image (b) from (a). Only moving objects appear in the resulting image

[mage subtraction
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¢ Multiplication and division are used to adjust the brightness of an
umage. Multiplying the pixel values by a number greater than one
will brighten the image. and dividing the pixel values by a factor
greater than one will darken the image. An example of brightness

adjustment 1s shown in the figure below.

(a) Origmal 1mage (b) Image multsplied by 2 (c) Image divided by 2

Image multiplication and division
Royida A. Alhayali Lecture #2



Logical Operations

The logic operations AND, OR. and NOT form a complete set, meaning
that any other logic operation (XOR. NOR. NAND) can be created by a

combination of these basic elements. They operate in a bit-wise fashion

on pixel data.

The AND and OR operations are used to perform masking operation; that

1s: for selecting subimages in an image. as shown in the figure below.

Masking 1s also called Region of Interest (ROI) processing.
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The NOT operation creates a negative of the original image .as shown in

the ficure below. bv mverting each bit within each nixel value.

2

(a) Ongmnal image (b) NOT operator applied to image (a)

Complement image
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Image files Format

Image files consists of two parts:

> A header found at the start of the file and consisting of
parameters regarding:

v Number of rows (height)

v Number of columns (width)

v Number of bands (i.e. colors)
v Number of bits per pixel (bpp)
v File type

> Image data which lists all pixel values (vectors) on the
first row, followed by 2nd row, and so on.




Digital Image File Formats

Types of image data are divided into two primary categories: bitmap and
vector.

» Bitmap images (also called raster images) can be represented as 2-
dimensional functions f{x,y). where they have pixel data and the
corresponding gray-level values stored in some file format.

o Vector images refer to methods of representing lines, curves, and
shapes by storing only the key points. These key points are

sufficient to define the shapes. The process of turning these into an

Royida A. Alhayali Lecture #2



Most of the types of file formats fall into the category of bitmap images,
for example:

» PPM (Portable Pix Map) format

» TIFF (Tagged Image File Format)

» @GIF (Graphics Interchange Format)

» JPEG (Joint Photographic Experts Group) format

» BMP (Windows Bitmap)

" PNG (Portable Network Graphics)

» XWD (X Window Dump)

Royida A. Alhayali Lecture #2



Image Histogram

> The distribution of gray levels in an image convey some useful
Information on the image content.

» For any image f of size mxn and Gray Level resolution k, the
histogram of h is a discrete function defined on the set {0, 1, ...,
2k-1} of gray values such that h(i) is th number of pixels in the
Image f which have the gray value 1.

> It Is customary to “normalise” a histogram by dividing h(i) by
the total number of pixels in the image, i.e. use the probability
distribution:

p(1) = h(i)/mn.
> Histograms are used in numerous processing operations.

Royida A. Alhayali Lecture #2



Histograms - Examples

Royida A. Alhayali Lecture #2



Local Vs. Global Histograms — Image Features

d  Histograms for parts of an image provide useful tools for
feature analysis.

1 Local Histograms provide more information on image
content than the global histogram.



Compression

0 Most image file formats employ some type of
compression.

0 Compression methods can be:

Lossy: a tolerable degree of deterioration is
introduced in visual quality.

Lossless: image is encoded in its full quality.
0 As a general guideline:

Lossy compression should be used for general
purpose photographic images

Lossless compression should be used for images in
which no loss of detail may be tolerable (e.g., space
images and medical images).




Image Aspect Ratio

= Height in cm (H)

Width in cm (W)

Image Aspect Ratio = image width/image height = W/H



Pixel Aspect Ratio

= Number of lines (N)

Number of pixels per line (M)

Pixel Aspect Ratio = pixel width/pixel height = WN/HM

21



Overview of Image Processing
Operations

e Operations in the Spatial Domain: Here, arithmetic calculations
and/or logical operations are performed on the original pixel
values. They can be further divided into three types.

Operations in a Transform Domain: Here, the image undergoes a
mathematical transformation—such as Fourier transform (FT) or
discrete cosine transform (DCT)—and the image processing
algorithm works in the transform domain. Example: frequency-
domain filtering techniques



Global (Point) Operations

Point operations apply the same mathematical function, often called
transformation function, to all pixels, regardless of their location in the image or
the values of their neighbors. Transformation functions in the spatial domain can
be expressed as

a(x,y)=T
f(x,y)

where g(X, y) is the processed image, f (X, y) is the original image, and T is an
operator on f (X, y).
Since the actual coordinates do not play any role in the way the transformation
function processes the original image, a shorthand notation can be used:

s=TI[r]
where r is the original gray level and s is the resulting gray level after processing.
Figure bellow shows an example of a transformation function used to reduce the
overall
Intensity of an image by half: s = r/2. Chapter 8 will discuss point operations and
transformation functions in more detail.



(b)

FIGURE 2.9 Example of intensity reduction using a transformation function: (a) original
image; (b) output image.



Neilghborhood-Oriented Operations

Neighborhood-oriented (also known as local or area) operations consist of
determining the resulting pixel value at coordinates (X, y) as a function of its
original value and the value of (some of) its neighbors, typically using a
convolution operation. The convolution of a source image with a small 2D array
(known as window, template, mask, or kernel) produces a destination image in
which each pixel value depends on its original value and the value of (some of) its
neighbors. The convolution mask determines which neighbors are used as well

as the relative weight of their original values. Masks are normally 3 x 3, such as
the one shown in Figure bellow.

W, W, W

W, Wy Wy

A 3 x 3 convolution mask., whose generic weights are Wy, ..., W,.



Operations Combining Multiple Images

There are many image processing applications that combine two images, pixel by

pixel, using an arithmetic or logical operator, resulting in a third image, Z:
XopnY=Z2

where X and Y may be images (arrays) or scalars, Z is necessarily an array, and

opn is a binary mathematical (+, —, %X, /) or logical (AND, OR, XOR) operator.

Figure bellow shows schematically how pixel-by-pixel operations work.

opn ey | A

-
r

[

FIGURE 2.11 Pixel-by-pixel arithmetic and logic operations.



Operations in a Transform Domain

A transform is a mathematical tool that allows the conversion of a set of values to
another set of values, creating, therefore, a new way of representing the same
iInformation. In the field of image processing, the original domain is referred to as
spatial domain, whereas the results are said to lie in the transform domain.

The motivation for using mathematical transforms in image processing stems from
the fact that some tasks are best performed by transforming the input images,
applying selected algorithms in the transform domain, and eventually applying the
inverse transformation to the result Figure bellow. This is what happens when we
filter an image in the 2D frequency domain using the FT and its inverse

F e’

e Transform T s, v) | Operation R [T (an. ”'I__ Inverss E L5 53 .
Spatial a transform Spatial
domain —_— domain

Transform domain
L o

Operations in a transform domain.



Translation, Scaling, Rotation and Perspective
Projection of image

A geometric operation can be described mathematically as the process of transforming
an input image 77x, ¥) into a new image g(x', y') by modifying the coordinates of
image pixels:

Fx ) — gihlyh (7.1)

that is, the pixel value originally located at coordinates (x, ¥) will be relocated to
coordinates (x!, ') in the output image.

To model this process. a mapping function is needed. The mapping function spec-
ifies the new coordinates (in the output image) for each pixel in the input image:

L) =T y) (7.2)

This mapping function is an arbitrary 2D function. It is often specified as two
separate functions, one for each dimension:

= To(x y) (7.3)

and

V=T ) (7.4)



where T and T, are usually expressed as polynomials in x and y. The case where T
and T, are linear combinations of x and y is called affine fransformation (or affine

mapping):

X = agx +ay+a (7.5)
W= box + by + by (7.6)
Equations (7.5) and (7.6) can also be expressed in matrix form as follows:
1T 177
X dp d X
|Ly‘ | = ﬂbﬂ by b J L|y ! (1.7)
1 0 0 1 1

Affine mapping transforms straight lines to straight lines, triangles to triangles,
and rectangles to parallelograms. Parallel lines remain parallel and the distance ratio



TABLE 7.1 Summary of Transformation Coefficients for Selected Affine
Transformations

Transformation g a @ by by b
Translation by 6,, 6, 1 0 o6, 0 1 o,
Scaling by a factor [s,, 5] Sx 0 0 0 s, 0
Counterclockwise rotation by angle 6 cos smf 0 =—smf cosé O
Shear by a factor [sh,, sh,] 1 sh, 0 sh, 1 0




7.4.2 Translation

Translation of an input image #{x, ) with respect to 1ts Cartesian origin to produce
an output image g(x!, y') where each pixel is displaced by [ 65, 6y](Le. d=x+6,
andy' =y + 6y) consists of a special case of affine transform (as discussed in Sec-
tion 7.2). In Tutorial 7.2 (page 142). you will use maketform and imtransform
to perform image translation.

7.4.3 Rotation

Rotation of an image constitutes another special case of affine transform (as dis-
cussed in Section 7.2). Consequently, image rotation can also be accomplished using
maketform and imfransform.

The IPT also has a specialized function for rotating images, imrotate. Similar
to imresize, imrotate allows the user to specify the interpolation method used:
nearest-neighbor (the default method), bilinear, or bicubic. It also allows specification
of the size of the output image. In Tutorials 7.1 (page 138). and 7.2 (page 142), you
will explore the imrotate function.



7.44 Cropping

The IPT has a function for cropping images, imcrop, which crops an image to a
specified rectangle. The crop rectangle can be specified interactively (with the mouse)
or 1fs coordinates be passed as parameters to the function. In Tutortal 7.1 (page 138).
you will experiment with both options for using this function.

7.4.5 Flipping

The IPT has two functions for flipping matrices (which can also be used for raster
images, of course): flipud—which flips a matrix up to down—and fliplr—
which flips a matrix left to right. In Tutorial 7.1 (page 138), you will experiment with
both functions.



7.9.1 Warping

Warping can be defined as the “transformation of an image by reparameterization of
the 2D plane” [FDHF* 05]. Warping techniques are sometimes referred to as rubber

sheet fransformations, because they resemble the process of applying an image to a
sheet of rubber and stretching it according to a predefined set of rules.
The quadratic warp 1s a particular case of polynomial warping, where the trans-

formed coordinates (x', ') for a pixel whose original coordinates are (x, y) are given
by the following equations:

= f;tgx2 + alyl + axy + azx + agy + as (7.8)

y' = box? + byy? + byxy + b3x + byy + bs (7.9)



1.5.2 Nonlinear Image Transformations

Nonlinear image transformations usually involve a conversion from rectangular to
polar coordinates followed by a deliberate distortion of the resulting points.

Twirling The twirl transformation causes an image to be rotated around an anchor
point of coordinates (x;, y.) with a space-variant rotation angle; the angle has a value
of a at the anchor point and decreases linearly with the radial distance from the center.
The effect is limited to a region within the maximum radius ry,,. All pixels outside
this region remain unchanged.

Since this transformation uses backward mapping, we are interested in the equa-
tions for the inverse mapping function:

T+ rcos(d) forr = rpax

T, l:x= 7.10
* . for 7 > rogy (7.10)



Image Manipulation

Image Filtering: Change range (brightness)
g(x,y) =T.(f(x,¥))

mn

Image Warping: Change domain (location)

g(X,}’) — f('l‘(f(xvy))

Transformation 7, is a coordinate changing operator
/

I(I




2X2 Linear Transformations

P = (x1.)1) P2 = (x2.¥2)

T can be represented by a matrix.

@11 alzll I
A,y Qy;

p. = Tp; =T =




Scaling (Stretching or Squishing)

Y Y ¢
— S ——
— S fem
S e
Forward: Inverse:
X, = aX — = - 1
2 1 Y2 M1 Xy = axz Y= b}’z

le
Y2

2 =sf=12 [ Nasf]=[4"



2D Rotation

¥,
P, X, = rcos(p)
yl ................................ , )
e | Y, = rsm(qp)
1@ § -
X1

X, =rcos(p +6) y, =rsin(¢ +0)
X, =rCcos@cosf —rsingsinf Yy, =rcos@sinf +rsingcost

X, = X, C086 — y,SIn0 Yy, = Xy Sinf + y, cos @




Forward:

X, = X,€0860 — y,sinf
Yy, = X,Sinb + y,cos6

'IZI R xxl B |c058

Y2 - Y1 sinf

—-Ssiné
cosét

Rotation

[y

Inverse:

Xy = X,0086 + y,sinf

y; = —X,sinf + y,cos6

Y1

X1 _1 [X2 cosf
-

Y2 —sinf

siné
cost

)
Y2
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Horizontal Skew:

Xy = Xq + MY,

Y2 =-ye
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Vertical Skew:
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Mirror

X X
Mirror about Y-axis: Mirror about line y = x:
X2 ==X X2=N
¥ =y Y2 =X

M= 8 Moy =[] ol



Translation

X, =Xy + 1y Y2=1 11

Can translation be expressed as a 2x2 matrix? NO.




Global Warping/Transformation

ﬂ

\

Rotation
Translation Scalmg and Aspect

g(xy)=f(Txy))
"

Projective

Affine Barrel

Transformation T is the same over entire domain

Often can be described by just a few parameters




Spatial Transformation

In a spatial transformation each point (z,y) of image A is mapped to a
point (u,v) in a new coordinate system.

u= fi(z,y)
v = fa(x,y)
-ffﬂ_———___"'a
T Tl by

Mapping from (x,y) to (u,v) coordinates. A digital image array has an implicit grid
that is mapped to discrete points in the new domain. These points may not fall on grid
points in the new domain.



Affine Transformation

An affine transformation is any transformation that preserves collinearity
(i.e., all points lying on a line initially still lie on a line after transformation)
and ratios of distances (e.g., the midpoint of a line segment remains the
midpoint after transformation).

In general, an affine transformation is a composition of rotations,
translations, magnifications, and shears.

U= C11T + C12Y + C13

U= C1T + C2Y + €23

ciy and coq affect translations, ¢q; and ¢y affect magnifications, and the
combination affects rotations and shears.



Affine Transformation

A shear in the x direction is produced by

u=mx+ 0.2y

v=y
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Affine Transformation

This produces as both a shear and a rotation.

u=1x+4+ 02y

v=—-03r+y

15

10

N Ny

15

]



Affine Transformation

A rotation is produced by # is produced by

u=mxcost + ysind

v = —xsinf + ycosf
5 15
L| 10

5_ : 1 ]
-5 i 5 N 5 -5



L EXAMPLE 7.1

Generate the affine transformation matrix for each of the operations below: (a) rotation
by 307 (b) scaling by a factor 3.5 in both dimensions; (c) translation by [25, 15] pixels:

Input Output

e > G0 79)

-
T

> (x1,¥1)

(x23%

FIGURE 7.2 Mapping one triangle onto another by an affine transformation.

(d) shear by a factor [2, 3]. Use MATLAB to apply the resulting matrices to an input
image of your choice.



Solution
Plugging the values into Table 7.1, we obtain the following:
(a) Since cos 30" = 0.866 and sin 30" = 0.500:

l—[}.Sﬁﬁ —0.500 ﬂ-l

{ﬁ.sm 0.866 :]J

0 0 1
(b)
35 0 o
l o 35 ol
o o 1
()
"1 o o
lo 1 ol
25 15 1
()
1 3 o]
12 1 of
0 0 1



Combinations of Transforms

Complex affine transforms can be constructed by a sequence of basic affine
transforms.

Transform combinations are most easily described in terms of matrix
operations. To use matrix operations we introduce homogeneous
coordinates. These enable all affine operations to be expressed as a
matrix multiplication. Otherwise, translation is an exception.

The affine equations are expressed as

u a b el |z
vl =|d e f| |y
1 0 0 1| (1

An equivalent expression using matrix notation is
q=Tp

where q, T and q are the defined above.



Transform Operations

The transformation matrices below can be used as building blocks.

(1 0 xzp
T= |0 1 uy Translation by (xp, yo)
0 0 1
sy 0 0
T=1|0 s 0 Scale by sy and s9
0 0 1
[ cosf sinf 0
T = |—sinf cosf# 0| Rotate by #
0 0 1

You will usually want to translate the center of the image to the origin of
the coordinate system, do any rotations and scalings, and then translate it

back.



Combined Transform Operations

Operation

Expression

Result

Translate to
Origin

1.00 0.00 —5.00
0.00 1.00 —5.00
0.00 0.00 1.00

Rotate by 23
degrees

0.92 039 0.00
—0.39 0.92 0.00
0.00 0.00 1.00

Translate to
original
location

T3

1.00 0.00 5.00
0.00 1.00 5.00
0.00 0.00 1.00

..........




Composite Affine Transformation

The transformation matrix of a sequence of affine transformations, say T
then T5 then Ty is
T=T:T-T1

The composite transformation for the example above is

0.92 0.39 —1.5ﬂ
T=TyT:T; = |—-039 092 235
L 0.00 0.00 1.00 J

Any combination of affine transformations formed in this way is an affine
transformation.

The inverse transform is
—1 —1p—1p—1
T - Tl Tg TE

If we find the transform in one direction, we can invert it to go the other
way.



Composite Affine Transformation RST

Suppose that you want the composite representation for translation, scaling
and rotation (in that order).

O B B b F]

0 0 1JL[}01J[{JG1J

__SI}CDSE s1sinf  sprgceosf 4+ syxrysinf
| —spsinf spcosf syzqcost — sprgsind

Given the matrix H one can solve for the five parameters.



How to Find the Transformation

Suppose that you are given a pair of images to align. You want to try an
affine transform to register one to the coordinate system of the other. How
do you find the transform parameters?

N




Interpolation

Interpolation is needed to find the value of the image at the grid points in
the target coordinate system. The mapping T locates the grid points of A
in the coordinate system of B, but those grid points are not on the grid of

B.

To find the values on the grid points of B we need to interpolate from the
values at the projected locations.

Finding the closest projected points to a given grid point can be
computationally expensive.



Inverse Projection

Projecting the grid of B into the coordinate system of /A maintains the known image values
on a regular grid. This makes it simple to find the nearest points for each interpolation

calculation.
T T
- T
. | -
L —
1. {llr - .

Let (), be the homogeneous grid coordinates of B and let H be the transformation from
A to B. Then

P=H 'Q,

represents the projection from B to A. We want to find the value at each point P given
from the values on P, the homogeneous grid coordinates of A.



Methods of Interpolation

There are several common methods of interpolation:

o Nearest neighbor — simplest and fastest

e Triangular — Uses three points from a bounding triangle. Useful even
when the known points are not on a regular grid.

e Bilinear — Uses points from a bounding rectangle. Useful when the known
points are on a regular grid.



Bilinear Interpolation

Suppose that we want to find the value g(q) at a point g that is interior to a
four-sided figure with vertices {pp, p1, p2, p3}. Assume that these points are
in order of progression around the figure and that p; is the point farthest
to the left.

1. Find the point (z4,ya) between po

and pi. Compute g(z,,y,) by linear PRy
interpolation between f(pp) and f(p1). a‘quﬁ}g/
axsy ||
2. Find the point (z,, u) bEtWEEI:I Pa - ‘ o -
and pa. Compute g(z,,yp) by linear Vi 7
interpolation between f(p3) and f(pa). Lﬁ’:ﬁ,}w f
(g o E}a;}faﬁ E;h'.ﬁ,"

3. Linearly interpolate between g(z,,y.)
and g(z,,ys) to find g(z,, y,).



Triangular Interpolation

Let (x4, 44, 2:) @ = 0,1,2 be three points ..
that are not collinear. These points form *{“HH
a triangle. Let (z,,y,) be a point inside K\\

the triangle. We want to compute a value \ JE e o)
24 such that (x4, y,, 24) falls on a plane Y /

that contains (x;,y;.2;), i = 0,1,2.

-‘-\_\_\_\-\_\-\-

This interpolation will work even if g is (=50
not within the triangle, but, for accuracy,
we want to use a bounding triangle.

The plane is described by an equation
2 =g+ 4T + asy

The coefficients must satisfy the three equations that correspond to the
corners of the triangle.



Triangular Interpolation

20 1 o wyo ao
21 | =11 1 1 1
29 1 T2 19 9

In matrix notation we can write
7z = Ca

so that
a=C"1g

The matrix C is nonsingular as long as the triangle corners do not fall along
a line. Then the value 2, is given by

2g=[1 74 ysla=[1 z; y, |C'z
Since C depends only upon the locations of the triangle corners, (z;,v;),

i=10,1,2 it can be computed once the triangles are known. This is useful
in processing large batches of images.



Projective Transform

The projective transform can handle changes caused by a tilt of the image
plane relative to the object plane.




Projective Transform

The perspective transformation maps (X, Y, Z) points in 3D space to (z, y)
points in the image plane.

Suppose that A and B are images taken at different camera angles.
Projection of one image plane onto the other to correct the relative tilt
requires a projective transform.

ar + +
U= by and @

Cgr+hy+1

_drtey+f
gr + hy + 1

This eight-parameter transform maps (z,y) points in A to (u,v) points in

B.



Projective Transform

The coefficients can be computed if n = 4 matching points are known in A

and B. Arrange the equations as

To yp 1
0 ] ()
1 1

()

0 0

Tn—1 Yn—1 1
0 0 ()

azx; + by; + ¢ = gzru; + hy;u; + u;

dr; + ey; + f = grv; + hyv; + v;

0
o
0
T

0
Tn—1

0

Yo
0

U1

0
Yn—1

(B e B B s |

0
1

—Lolp
—1uy

—Lp—1Up—1
—Tpn-1Vn—1

—Yolug
—Yovto
—Y1uq
—nu

—Un—1Up—1

—Un—1Un—1

()]

T T =T o T ==

The parameters can be found by multiplying both sides with the pseudo-
inverse of the big matrix of coordinate terms.




and

) Ve +rsin(@) forr = rpax

L for r > Fopax (7.11)

Ty_l:y= y

where )
.= At - X, F= dxz + .::af,_;E

—F

dy = ' =y, 6= arctan(d,, dy) +a- rm;“
Rippling The ripple transformation causes a local wave-like displacement of the
image along both directions. x and y. The parameters for this mapping function are
the (nonzero) period lengths Ly, L, (in pixels) and the associated amplitude values
Ay , Ay . The inverse transformation function is given by the following:

.EJ['_}ft -

T, ' :x=x! + 4, sin (7.12)

T2t

Ly

T, iy =)'+ 4, -sin (7.13)



Light Tunnel

FIGURE 7.6 Image deformation effects using Photo Booth.



Color Spaces:

* Practical Color Sensing: Bayer Grid.

T 4 » Estimate RGB
Filter Layer at ‘G’ cells
“““““ from

neighboring

Resulting Patern

values



Color Sensing in Camera (RGB):

* Practical Color Sensing: Bayer Grid.




Color Sensing in Camera (RGB):

» Default color space:
= Any color = r*R + g*G + b*B.
= Strongly correlated channels.
* Non-perceptual.

R=1

(G=0.B=0)

B=1

(R=0,G=0)




Color Image (RGB):




Color Image (RGB):

* |mages represented as a matrix.

* Suppose we have a NxM RGB image called “im”.
* im(1,1,1) = top-left pixel value in R-channel.

" im(y, X, b) =y pixels down, x pixels to right in the bth

channel.

" im(N, M, 3) = bottom-right pixel in B-channel
* imread(filename) returns a uint8 image (values 0 to 255).
* Convert to double format (values 0 to 1) with im2double

row

column ﬁ
AL
paz | 093 | 054 | 057 | o6z | 037 | 085 | 097 [ 093 | 092 | Doe
085 | 085 | 082 | ogs | ase | 031 ) a7 | 052 | a8l | ass | 051
0.89 | 072 | 0.51 [ 0,55 | 051 ) 0.42 | 057 | 041 | 0.49 | 0.91 | 0.90 fr=—=r=—=— G
0.96 | 0.95 | 088 [ 0.54 | 055 | 0.46 | 091 | 0.87 | 0.90 | 0.57 | 0.85 I T
071 | 081 | ozl | ogr | o5y | 037 | oz | ose | oas | ars | oes = -
ael | oss
0.99 | .62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 050 | 0.61 | 045 | 0.33 f= S o 0.92 | 0.9%
086 | 084 | 074 | ose | o5 | ose | o | osr | ool | ods | ore nlrsl n.ai 0.95 | 0.91
096 | 0567 | 054 | 085 | 048 | 037 | 088 | 090 | 094 | 082 | Do3 U' 5 |:|.33 0.91 | 9.92
069 | 0.45 | 056 | 066 | 0.43 | 042 | 077 | 073 | 071 | 0.80 | 089 =0 n.? 1 0.a7 | 095
079 | 073 | 090 | 067 | 033 | 061 | 068 | 07a | 073 | 093 | 097 ulaz D'ﬁ 02 | 08
091 | 0.94 | 089 | 049 | oa1 [ o7e | o7e | o077 [ 0as | oes | 0o 045 | 9.33
— — e i s e e s .50 | 0,5 0as | a7
LS | dord | O | OB L33 el f.a4 0.4 | ds3 ) 024 .5y T 581
O I I i, 5% [ Ll doe | 0L 0,00 | aER |05 Q43 o90 | gag
078 | 073 | 090 | 067 | 033 | 061 | 069 | 079 | 078 | o9 | oor
091 | pod | oas | o049 | o4t | o7e |o7e | 077 | 069 | oge | oo
e —— — S




Color spaces: HSV:

Hue

* |ntuitive color space:

Saturation



Back to grayscale intensity:

(5]




Color spaces: HSV

Intuitive color space

Hue

Saturation

(S=1,v=1)

| o O (H=1,v=1)

(H=1,5=0)




Color spaces: YCbCr

Fast to compute, good for
compression, used by TV

Y=0 Y=0.5

(Cb=0.5,Cr=05)

Cb

(¥=0.5,Cr=05)

Cr

(Y=0.5,Ch=05)




Color spaces: L*a*b*

“Perceptually uniform™ color space

(a=0,b=0)

d

(L=65b=0)

b

(L=65,a=0)

James Hays



