Digital Image Processing

® -

Banana

Grape

Digital Image Processing
Lec. 3: Image Filtering
Assist. Prof. Dr. Saad Albawi

Three Views of Filtering :

* |mage filters in spatial domain
* Filter is a mathematical operation of a grid of numbers.
* Smoothing, sharpening, measuring texture.

* |mage filters in the frequency domain
* Filtering is a way to modify the frequencies of images
* Denoising, sampling, image compression

* |mage pyramids

» Scale-space representation allows coarse-to-fine
operations.

Neighborhood processing

Define a reference point in the input image, f(xg yy).

Perform an operation that involves only pixels
within a neighborhood around the reference point
in the input image.

Apply the result of that operation to the pixel of
same coordinates in the output image, g(x, y,).

Repeat the process for every pixel in the input

image.
HEEEEEN

Neighborhood processing

o Linear & shift-invariant (LTI) filters: the resulting
output pixel is computed using a weighted average of
neighboring pixel values with a fixed kernel.

o Linear & locally adaptive filters: the resulting
output pixel is computed using a weighted average of
neighboring pixel values where the kernel weights

may vary depending on the pixel location.

o Nonlinear filters: the resulting output pixel is
computed via a nonlinear combination of neighboring
pixel values.

10.2.1 Convolution in the One-Dimensional Domain

The convolution between two discrete one-dimensional (1D) arrays A(x) and B(x),
denoted by 4 * B, 1s mathematically described by the equation

00

AtB= A()-B(x - (10.1)

J==0

1We shall see additional examples of neighborhood operations for different purposes—for example, image
restoration (Chapter 12) and edge detection (Chapter 14)—later in the book.

.FH H

2D Convolution (LTI Filtering)

EEJ’?[;H i.n— jlxli.j]

Three Views of Filtering :

* |mage filtering:

* Compute function of local neighborhood at each

position.

l l ffllter
Zf [k,111

T

|

=

1]

s the 2d output coordinates

m+k n+/]

is the 2d Kernel coordinates
I

e X

H:xp;
“')ij
Mmpps ”]Xp;
w _ rEr i —s ¥ —_vill
mpsp We X pe ¥o
s x m
Ws X
Ws X pe
Input image / Output image F

FIGURE 10.1 Neighborhood processing for the case of linear filtering.

° Output Image Size Options

(M+E-Dx(N+L-1) M=xN (M —K+Dx(N —L+1)

L EXAMPLE 10.1

In this example, we show how the result of a 1D convolution operation can be obtained
step-by-step. Let 4 = {0, 1,2, 3,2, 1,0} and B = {1, 3, —1}. The partial results of

multiplying elements in 4 with corresponding elements in B, as B shifts from —©o0
to 00, are displayed below.

1. Imitially, we muror array B and align its center (reference) value with the first

leftmost) value of array 4.> The partial result of the convolution calculation
0X(=1))+(0xX3)+ (1 X1)=1 (where empty spots are assumed as zero)

is stored in the resulting array (4 * B).

A o 1 2 3 2 1 0
B | -1 3
A*B 1

2. Array B 1s shifted one position to the right. The partial result of the convolution
calculation (0 X (—1)) + (1 X 3) + (2 X 1) = 5 1s stored in the resulting array

(4 * B).

A 0 1 2 3 2 1 0
B -1 3 1
A *B 1 5

3. Array B 1s shifted another position to the rlght The partial result of the convo-
lution calculation (1 X (—1 g) + (2 X 3) + (3 X 1) = 8 is stored in the resulting

array (4 * B).

A o 1 2 3 2 1 0

A*B 1 5 8

4. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (2 X (—1)) + (3 X 3) + (2 X 1) = 9 is stored in the resulting

array (4 * B).

A 0 1 2 3 2 1 0
B -1 3 1
A*B 1 5 8 8

5. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (3 X (—1))+ (2 X 3) + (1 X 1) = 4 is stored in the resulting

array (4 * B).

A o 1 2 3 2 1.0
B -1 3 1
A=*xB 1 5 8 8 4

6. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (2 % (—1)) + (1 X 3) + (0 X 1) = 1 is stored in the resulting

array (4 * B).

A 0 1 2 3 2 1 0
B -1 3 1
A*B 1 5 & 8 4 1

10.2.2 Convolution in the Two-Dimensional Domain

The mathematical definition for 2D convolution is

OO oo

g y) = h(j, k) Fix =y — k) (10.2)

k=—0o j=—00
In practice, this is rewritten as

'L o
glx y) = hG. k) S =7y — k) (10.3)

k=—naj=—m

where m» is equal to half of the mask’s width and n> is equal to half of the mask’s
height. that is,

my = [m/2) (10.4)

and
ny = [n/2] (10.5)

where [x] is the floor operator, which rounds a number to the nearest integer less than
or equal to x.

Example: Box Filter:

* |mage filtering:
* Compute function of local neighborhood at each
position.

O|

Image filtering T

h[m,n =Zf (k[I[m+Fk,n+1]
k.

Credit: S. Seitz

Image filtering T

h[m,n]=Zf[k,l: Ilm+k,n+l]

Credit- S Seit7

Image filtering T

1 I[m+Fk,n+1]

Credit: 5. Seitz

Image filtering T F

—L—L—LI
—

h[m,n]=Zf[k,l] Ilm+k.n+1]

Mrmelsd- & O md—

L EXAMPLE 10.2

Let

r5834623?'—|

5 3 0 4 8 3
9 0 o

9

0

4 2 7 2 1
lo 7 0 8 0 4 2 4

21 8 4 1 0 9
8 5 4 9 2 3
3 4 4 6

L1

A:

and

The result of the convolution 4 +* B will be

A+B =

rED

18
14
29

10

1
22
21

—25

—10

23

(=2 (=1 =04 {0 =% 0]+
(=l M+ {l =8+l =8+
(O] ®8) (2 =2)

b ou i

-

FIGURE 10.2 Two-dimensional convolution example.

TABLE 10.1 Examples of Convolution Masks

Low-Pass Filter High-Pass Filter ~ Homzontal Edge Detection

L9 19 L9 T 0 —1 0" 1 1 1°
L9 1.9 19 -1 5 -1 0O 0 0
19 1.9 1-9 0 -1 0 -1 -1 -1

In practice, this is rewritten as

13
13

glx, y) = h(j. k) - fix + 7.y + k)

k=—ny j==ny

where m», and n, are as defined earlier.

(10.8)

FIGURE 10.3 Applying different convolution masks to the same mput image: (a) original
image; (b—d) result of 2D convolution using the masks in Table 10.1.

Example: Box Filter:

* [mage filtering:
* Compute function of local neighborhood at each
position

hlm,n]|= Zf[k,]] I[m+k,n+1]
k.1

» Really important!
* Enhance images
* Denoise, resize, increase contrast, etc.
* Extract information from images
» Texture, edges, distinctive points, etc.
* Detect patterns
* Template matching

Think-Pair-Share Time:

Practice with Linear Filters

Original

Practice with Linear Filters

Filtered
(no change)

Original

1. Practice with Linear Filters

ifted lett

Original By 1 pixel

Practice with Linear Filters

\‘.’_‘\ \
‘\‘ /' \
Vertical Edge
(absolute value)

Practice with Linear Filters:

* Sharpening filter
» Accentuates differences with local average

0(0]|0 i e
0(2|0|mm 5 i 5 5 A
0(0]0 T (1

Original Sharpening filter

Practice with Linear Filters:

* Sharpening filter
* Accentuates differences with local average

before after

e Separable 2-D Filter

v[m.n]= E Eﬁ[”f —i.n— jlx[i. j]

separable hlm,n]=h|mlh,|n]
Low-pass filter High-pass filter Horizontal edge detection
/9 1/9 1/9 0 -1 1 1 1 1
/9 1/9 1/9 —1 -1 () 0 0
19 149 1/9 0 -1 (-1 -1 -1
separable non-separable separable

Separable Smoothing Kernel
Examples

hlm.n] = m]m[n]

1161 4|1
16| 24|16 |4
24 136 24 |6
16|24 | 16 | 4
1161 41

1
256

g
==
]

R N L
|

Liola]- o] 2] L[t]4]e]a]1]
Mean Bilinear
filter filter

(Gaussian
filter

B
.] :-__,.,-F"'I T —
'J.-'I-F'_-' ._.
o
e R = ’ -~
[N = N
0, e
PR g
o1 R s
sz SRR T
i T

Implementation of a
Separable 2-D Filter

y[m.n]= E E?rl[m —ilhy[n = jlx[i. j]

zh][n Ehl m —i|x]|i. ,r] . rows

= EIJ [n —j]T[m jl - columns

Two 1-D convolution computations: ._f"nflﬂ':r N

Rather than one 2-D convolution: N log N?

11

Convolution Properties:

* Commutative:a*b=Db*a
* Conceptually no difference between filter and signal

* But particular filtering implementations might break
this equality, e.g., image edges

» Associative:a*(b*c)=(a@a*b)*c
» Often apply several filters one after another: (((a * b1)
b2) * b3)
* This is equivalent to applying one filter: a * (b1 * b2 *
b3)
» Correlation is _not_ associative (rotation effect)

* Why important?

Convolution Properties:

* Commutative:a*b=b"*a
= Conceptually no difference between filter and signal
» But particular filtering implementations might break this equality,
e.g., image edges
» Associative:a*(b*c)=(a*b)*c
= Often apply several filters one after another: (((a * b1) * b2) *
b3)
* This is equivalent to applying one filter: a * (b1 * b2 * b3)
* Correlation is _not_ associative (rotation effect)
* Why important?
» Distributes over addition: a*(b+c¢c)=(a*b)+ (a*)
» Scalars factorout: ka*b=a*kb=k(a*b)
* |dentity: unit impulsee =[0,0,1,0,0],a*e=a

2D Filters

Mean (averaging) filter

o The simplest and most widely known spatial
smoothing filter.

o Ituses convolution with a mask whose
coefficients have a value of 1, and divides the
result by a scaling factor (the total number of

elements in the mask).

o Also known as box filter.

(19 1/ 1/9 BRI
i, y) /9 1/9 1/9 5| ! 1
- 1/9 1/9 1/9 | 11 1

By Oge Marques Copyright © 201 | by johnVWiley & 5Sons, Inc. All rights reserved.

(a) (b)

{c) (d)

FIGURE 10.5 Examples of applying the averaging filter with different mask sizes: (a) 1
image (899 X 675 pixels); (b—d) output images corresponding to averaging masks of swe(7
15 X 15, and 31 X 31.

*

Mean Filter Variations

o Modified mask coefficients, e.g. Give more importance to
the center pixel:

0.075 0.125 0.075
hila,y) = | 0.125 0.2 0.125
0075 0.125 0.075

o Directional averaging: rectangular mask for blurring is
done in a specific direction.

o Selective application of averaging calculation results:

if the difference between original and processed values
is larger than T, keep the original pixel (preserves
important edges)

© Removal of outliers before calculating the average

By Oge Margques Copyright @ 201 | by johnViley & Sons, Inc. All rights reserved.

Separability Example:

112 |1 2 13]3 =2+6+3=11
2D convolution 2 [4]2]«[3[5]5]| =6+20+10=36
(center location only) 1 1
11211 (4146 =4+8+6=18
65
The filter factors : | b 1] s] = I ;
into a product of 1D 2 1412|=]>»
filters: BB
_ 2 13]3 11
Perform convolution TT11*G 15 15 1= P
along rows: !
4 |4 |6 18
1 11
Followed by convolution =l 1= |
along the remaining column: 2 el Il I O O 51
1 18

Separability

e Why is separability useful in practice?

e |f Kis width of convolution kernel:
e 2D convolution = K2 multiply-add operations

e 2x 1D convolution: 2K multiply-add operations

Practical matters
How big should the filter be?

* Values at edges should be near zero

* Gaussians have infinite extent...

* Rule of thumb for Gaussian: set filter half-width to
about 3 ¢

Median filter

o Works by sorting the pixel values within a
neighborhood, finding the median value and
replacing the original pixel value with the median
of that neighborhood.

9|1z| 0]
Al = (0NN 0| S|5|] 8107
L T
BEEE : BonE
Fix,y) median

By Oge Marques Copyright © 2011 by johnVViley & 5ons, Inc. All rights reserved.

Median filter in 2D

« A median filter operates over a window by selecting
the median intensity in the window

1011520
90127

. 30

10 15 20 23 {27130 31 33 90

‘od

‘o2 | -

l Sort

b
'J-)

Median value

10]15]20 l Replace
2312727
31130

w it
'.)J ’

(a) (b)

(<) (d)

FIGURE 10.9 (3) Onginal image; (b) image with salt and pepper noise; (c) resultof 3 < 3
median filtering; (d) result of 3 X 3 neigshborhood averazing.

10.4 IMAGE SHARPENING (HIGH-PASS FILTERS)

We call high-pass filters those spatial filters whose effect on an image 1s equivalent to
preserving or emphasizing its high-frequency components (1.e., fine details, points,
lines, and edges), that 1s, to highlight transitions in intensity within the image.

Linear HPFs can be implemented using 2D convolution masks with positive and
negative coefficients, which correspond to a digital approximation of the Laplacian.
a sumple, isofropic (1.¢., rotation invariant) second-order dervative that 15 capable of
responding fo intensity fransitions m any direction

10.3.3 Gaussian Blur Filter

The Gaussian blur fiter 15 the best-known example of a LPF implemented with a
nonuntform kernel. The mask coefficients for the Gausstan blur filter are samples

trom a 2D Gaussian function (plotted in Figure 10.6):

()
)

h(x, y) = exp (10.11)

lo

The parameter ¢ controls the overall shape of the curve; the larger the value of 0.
the flatter the resulting curve,

® Gaussian blur filter

0 The best-known example of a LPF implemented with a non-uniform
kernel

0 The mask coefficients for the Gaussian blur filter are samples from a
2D Gaussian function:

1 I-'l
Dt £

—f.."h'r -t ::I
o,) = exp { l‘ Y ‘

0 The parameter sigma controls the overall shape of the curve. The
larger the sigma, the flatter the resulting curve.

By Oge Margues Copyright @ 2011 by JohnVWiley & Sons, Inc. All rights reserved.

Some of the most notable properties of the Gaussian blur filter are as follows:

* The kernel is symmetric with respect to rotation; therefore, there is no directional
bias in the result.

* The kernel 1s separable, which can lead to fast computational implementations.

* The kernel’s coefficients fall off to (almost) zero at the kernel’s edges.

* The Fourier transform (FT) of a Gaussian filter 1s another Gaussian (this will be
explained in Chapter 11).

* The convolution of two Gaussians 1s another Gaussian.

* The output image obtained after applying the Gaussian blur filter is more pleasing
{0 the eye than the one obtained using other low-pass filters.

Gaussian Filter

'OO?’SIJ 0.1238 0.0751

o=1 0.1238 ©.2042 0.1238
N =3 0.0751 0.1238 0.075]
B Z=.1019 0.1154 0.1019
g =2

T 0.1154 (0.1308 0.1154
N =3 0.1019 0.1154 0.1019

o Gaussian distribution is non-zero everywhere,

Gaussian Filter Kernel Size?

which would require an infinitely large convolution

kernel

o In practice it is effectively zero more than about
three standard deviations from the mean, and so we
can truncate the kernel at this point.

=1 Z=0.0030

7 0.0133
—= N =3xox2? 0.0219
= N =3 (should be odd) 0.0133
0.0030

0.0133 0.0219

0.0596
0.0983
0.0596
0.0133

0.0983
0.1621
0.0983
0.0219

0.0133 0.0030

0.0596
0.0983
0.0596
0.0133

0.0133
0.0219
0.0133
0.0030

Important filter: Gaussian:

* Weight contributions of neighboring pixels by nearness

0.003
0.013
Y | 0.022
0.013
0.003

0.013 0.022
0.059 0.097
0.097 0.159
0.059 0.097
0.013 0.022

0.013
0.059
0.097
0.059
0.013

0.003
0.013
0.022
0.013
0.003

5x5,c=1

I

hl
h2
h3

imread('Figurel0 07 a.png’');

= fspecial('gaussian', [5 5], 1)

Jl =

J2
J3

fspecial('gaussian', [13 13], 1):

fspecial('average', [13 13]):

imfilter(I, hl):;
imfilter(I, h2):;
imfilter(I, h3);

Gaussian Blur Filter

Original image

Mean filter. 13x 13 mask

Gaussian filler, 1313 mask, o

By Oge Marques Copyright © 201 | by john Wiley & Sons, Inc. All rights reserved.

1

1

Important filter: Gaussian:

* Smoothing with Gaussian filter.

Important filter: Gaussian:

* Smoothing with Gaussian filter.

Important filter: Gaussian:

* Smoothing with Gaussian filter.

Gaussian Filters:

» Remove “high-frequency” components from the image
(low-pass filter)

* |mages become more smooth
= Convolution with self is another Gaussian

* 50 can smooth with small-width kernel, repeat, and get
same result as larger-width kernel would have

* Convolving two times with Gaussian kernel of width ¢ is
same as convolving once with kernel of width o/2

» Separable kernel
» Factors into product of two 1D Gaussians

Gaussian Filters:

* Remove “high-frequency” components from the image
(low-pass filter)

X2+ y?
G,(x.y) = 1 ex 20°
o\ XY 272 P -
X2 y?
— 1_ ax "2_4r*:rzr 1 ex 2_~“Tf
. P — P
V2T V2o

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

The Laplacian

© The Laplacian operator is defined as

F(r,y) Fr.y)
Vi, y) = —120 4 — %7
5 Y) dr2 a2

© The Laplacian of an image is approximated as

Vir)= fle+1L9)+ flr—19)+ flr.y+ 1)+ flr.y— 1) —4f(r.y)

0 —1 [
—1 4 —1
0 -1 0

Laplacian Mask

o An alternative digital implementation
of the Laplacian takes into account all
eight neighbors of the reference pixel
and can be implemented using:

-1 -1 -1
-1 8 -1
-1 -1 -1

By Oge Marques Copyright © 201 | by johnVWiley & Sons, Inc. All rights reserved.

Composite Laplacian Mask

Goal is to restore the gray-level tonality
that was lost in Laplacian calculations.

Laplacian mask produces results centered
around zero, and hence very dark images.

g(z.y) = fz.y) + ¢ [V(z.y)]

FDI‘ Ezl: "-" L 1 "J

—1 ho—1
0 -1 0

By Oge Margues Copyright © 2011 by Jjohn'¥iley & 5ons, Inc. All rights reserved.

It 15 also common to factor equation (10.16) info the design of the mask, which
produces the composite Laplacian mask below:

o -1 o
-1 5 -1
0 -1 0

L EXAMPLE 10.5

Figure 10.10 shows an example (using the imfilter and fspecial funchions in
MATLAB) of applying a high-pass filter to enhance (sharpen) a monochrome image.
Figure 10.10a shows the original image. Figure 10.10b shows the resulting enhanced
image obtained by applying equation (10.16) with ¢ = —1 and Figure 10.10¢ shows
the result of using the eight-directional Laplacian operator instead. It can be claimed
that the results in part (c) are crisper than the ones obtained tn part (b).

High-Boost Filtering

L[-1 -
—1 ¢ —1
c=8 1 | -1 —1

o where: ¢ (¢ = 8) is a coefficient (" amplification
factor”) that controls how much weight is given
to the original image and the high-pass filtered
version of that image.

For ¢=9, the result would be equivalent to that
seen on the previous page.

Greater values of ¢ will cause less sharpening.

L EXAMPLE 10.6

Figure 10.11 shows an example of ROI processing using the roi1filt2 functionin
MATLAB.

FIGURE 10.11 Example of region of interest processing: (a) original image; (b) result of
applying a Gaussian blur to a selected ROI; (c) result of applying a HPF to a selected ROI;
(d) result of applying a Laplacian mask to a selected ROL

Directional Difference Filters

o Similar to the Laplacian high-frequency filter.

Main difference: directional difference filters
emphasize edges in a specific direction.

o Examples:

(b 1 0 1 () 0 0 0 0 0 =1

() 0 0 0 () 1 0 -1 i 0 {

b —1 [I | — o () [()
Honzontal edge detection

1 1 1
(b () i)
-1 -1 -1

Unsharp Masking

ﬂﬁm -1 Blur - Subftract jllh::ﬂ
I Sharpened
> Add — .
Original »| Convolution Sharpened
image mask * image

By Oge Margues

Copyright © 2011 by JohnWiley & Sons, Inc. All rights reserved.

Unsharp Masking

o Blur the image f(11) .
o Obtain the unsharp mask: g, .(x.v)=f(x.v)—f(x.v)

o Add a weighted portion of
th‘,} I_HHSI? back to the g{i .1*!} = f(.T._ L) + ‘kgmmk{r*.r}
original image
If k=1, we have unsharp
masking

If k=1, it is called highboost

filtering.
© Unsharp mask is very similar to what
we would obtain using a second order

derivative:

glx,y) = flx.y) + ¢ [Tj{.:r.-y}]

Nonlinear Filters

o Nonlinear filters also work at a neighborhood
level, but do not process the pixel values using

the convolution operator.

o Rank filters apply a ranking (sorting) function
to the pixel values within the neighborhood
and select a value from the sorted list.

Examples: median filter, max and min filters

(Gaussian noise

2D median filter, 3 x 3 neighbourhood

 sharpens edges, reduces noise, but ...
 generates jagged edges

Gaussian noise

Comparison with Gaussian filter

Gaussian: upper lip smoother, eye better preserved

Salt and Pepper noise

Gaussian
p =1 pixel

median

Median filter

Salt and
pepper .. 4
noise ;

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Source: M. Hebert

Image Sharpening (High-Pass
Filters)

o Spatial filters whose effect on the output image is
equivalent to emphasizing its high-frequency
components (e.g., fine details, points, lines, and
edges).

o0 Linear HPFs can be implemented using 2D
convolution masks which correspond to a digital
approximation of the Laplacian operator

