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Image Restoration

degradation restoration
f | blur and g restoration
noise scheme

L

f: original object
g: distorted noisy image
f: restored image
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Applications

o Law enforcement

o Medical Imaging

o Space explorations

o Commercial and consumer imaging



Restoration vs. Enhancement

RESTORATION: Undo or invert a mathematical model of

the degradation to obtain the " "1deal" image: e.g.. Wiener filtering,
constrained least-squares, 1iterative least-squares, POCS, etc.

ENHANCEMENT: Produce a more pleasing image without
using a particular model of the degradation: e.g., sharpening by
high-frequency emphasis, contrast adjustment by histogram
equalization.

WHY IMAGE RESTORATION ?

Most sertous image degradations are caused by distortion of

the Fourier phase of the image. Need to model the blurring process
accurately i order to be able to correct for the phase distortions.




Image Restoration
Requirements

1. Image formation model

e Type of blur (linear or nonlinear, space-variant or space-
invariant)
e Sensor transformation (density vs. exposure character-

istics of film, CCD sensor characteristics, etc.)

e Noise characterization (additive or multiplicative, signal-
dependent or signal-independent, white or colored, Gaus-
sian or other pdf)




Image Restoration Requirements

2. Restoration Framework

e Deterministic (Inverse filter, constrained least-squares,
etc.)

e Stochastic (Wiener filter, MAP, etc.)
e Linear (discrete convolution, Wiener filtering, etc.)

e Nonlinear (ML, ME, MAP, etc.)

3. Computational Algorithm

e Space domain implementation
e FFT implementation

e Iterative methods 10



Image Degradation Model
(Space and Fourier Domain)

Space domain:

g(my.my) = hin.n,)=xs(n.nm) +v(n.m)

Founer domain:

(_;{11:] . H?:_ } — H{u;] i H}I ]3{ H1l 1 H'?_"-' ] n V("If'l*'l 1 .H,J }



Inverse Filtering

G(w.wy) = HOwpowy)SOupaowy ) + V(wowy)

o Use mathematical inverse of the blur function to restore the
original image

; 1 .
S(wmy) = H O )(;(11‘1.11}3)
1- 1

Vw,.wy)
H(wy.mwy)

= S(wp. )+




Inverse Filtering:Effect of Noise

if H(w;.ny) 1s small for wy,w,

= noise 1s amplified at those frequencies

if H(w;,mw,) 1s zero for wy.w,

= restored 1mage 1s infinite at those frequencies

S (w.w,)= G(w,.w,)

H(w,.w,)




Pseudo Inverse Filtering

o Use pseudo-inverse to overcome the infinities at the
Zzeroes of the blur

CG(nyamy)
H{(wy.m,)

H(w.wy) =0
SOy ) =

0 H(w;,1,)=0

Still have noise amplification where H(wy.wy) 15 small.



Optimum LTI Filter for
Restoration: Wiener Filter

o Recall the Wiener filter for the blur-free case:
P _(my.m;)

S(wp. 1) = =
P, (,.35) + B, (1,.,)

G(wy.m,)

o When there is blur we have

s(ny.m,) —= h(ng.n, ) w5s(n.n,)

o Thus, substitute in the blur-free solution
Sﬁ'(u'lﬁ Wy ) — H(wy )5’(11'1_ ")
2
P (w.w,) — |H{11'1.u'1j E_(w.mwy)
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Optimum LTI Filter for
Restoration: Wiener Filter

|H(1r1.11‘2) lﬁaﬁn‘l_n‘z]
H(w00)[ B, (wwy) + By (17.983)

H{11‘1.h'2).§'{1r1.11‘2) =

G(w.ny)

."f -.H'-
H (w.w,)
P_(my.)

-
|H{11‘1_11:;.)|_ 4+ —
B (o)

j{n‘l.ﬂ'l) = Gwy. ;)




Example:
Out of Focus Restoration

Out-of-focus text image

Image restored by Wiener Filtering
17



@

Inverse vs. Wiener Filter

Wiener
filter

inverse
filter
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Characteristics of the
Wiener Filter

H*(h'l.n‘l)
P (w.mw,)

P (v,
ACREY Signal power

.{;'{11'1.11‘3} = G(w,,w,)

MNoise power

2
4

|H(11‘1.11'3)

o There is no ill-conditinoned behaviour associated with
the Wiener filter

o [f the noise power is zero at some frequency = we have
the inverse filter

o [f the signal power is zero at some frequency —>the filter
becomes zero = we can' t recover information at those
frequencies where the noise was completely dominant
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Shortcomings of the Wiener
Filter

o The MMSE (minimum mean squared error)
estimate is based on linear assumptions. But
there are nonlinearities in the image recording
and the human visual system.

o The MMSE is not the criterion that the human
visual system naturally employs. MMSE

restorations in low SNR cases appear too
smooth; the human eye is often willing to accept

more visual noise in exchange for additional
Image structure in the process.

20



Example

= 2 )
HR( ) |H(@)|2+“§—;E—j—%

In the absence of any knowledge about S,(w) and
S¢(w), assume S,(w)/Ss(w) = 7, where 7 is the ratio
of the noise to signal power. The Wiener filter then
becomes:

H*(w)

A2l = E@)r +

o 7x7 blur, 8-bit quantization ¥ =107 works best
o 7x7 blur, 12-bit quantization y = 10™* works best

21



Restoration Artifacts

« Filtered-noise artifacts
« Filter-deviation (regularization) artifacts
« Boundary-truncation artifacts

« PSF-error artifacts

23




Filtered Noise and
Regularization Artifacts

« Let O(w,.w,) be some LSI restoration filter.

S(w,,w, ) = D(w,, w, )G(w,,w,) .;,_-{ Gilwy.wy ) = Hiwy wy )S(wy o wy ) + F (wymwy) J

— t[}(“.-“ W, VH( Wy LW, }5;(“.-1 W, )+ q;{“_-“ W, )r:'(“rl W)
add and subtract S(w,w,). and rearrange terms
_%:,'{1..-]_”-]] = S0y w,) + [DOwy 0y ) H (v wy ) = 1S Gy vy )+ D w, wy )V ()
* In the image domain
s(x) = 5(x) +0,(x) () +0(x0)* v(x)

regnlarization artifacts  filtered noise artifacts
24
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Restoration Artifacts
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General Linear Regularization:
Constrained Least Squares Filter

High-pass filter

l

Smoothness - =
of the solution C; = E E{G(W'HJ rrrrrr 3 (H.Fi?)]'
moon T—

Restored image

/

Matching the ~ E E o B .
observation Co {-ﬁ (‘T'”J h(m.n) -5(53-’-?3))2
| H i

N

Observed image Actual blur



Constrained Least Squares Filter

Relative weight

mininuze C, +y C. withrespectto s(m.n)

C - 22 Ok.NSk.D)f
Due to Parseval s relation

=22 G(,e: 1) - H(k.D)S(k. fﬁ



Constrained Least Squares Filter

Minimize
Cor7C=3 Y (6.1 - HGEDSED] + Hlow.nsE.n) )

with respect to 5"?{:1{.1)

\

. ( H(k.D)
.S(J'ELT. JFJ = E 2
[H.D)|" + rlot.D]

G(k.I)




Example: Derivative Operators

= H'w)
Helw) = tH@r T 1P

1

LS~

If the operator [p] is chosen to be the first derivative,
then |P(w)|* = w?, and

H*(w)
Hp(w
A) = HR + o2
One may also use the DFT =1 | -0 | 1 0[-1(0
of the first and second 2 012 11 41-1
derivative kernels as P(w) 210 AEYE;
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Constrained Least Squares Filter

* Regularized Inversion:
H*{wl. W, )
|H(1.-u-‘._ W, }| o Lw, ,w,)

S(w,w,) = G(w,,w,)

« (Comments:

— L{w,,wy) =0 — mverse filtering.
— L(w,,wy) =1 — pseudo-inverse filtering.
~ L(w,.w,) = F0w.w,) 5 Wiener filtering.

P, (“"1 W)

Wiener filtering requires ¢ priori mformation about the

maee and noise statistics. .



Wiener vs. Constrained
Least Squares Filter
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Power Sprectrum Equalization

(:T‘{"W] ; H’: ) = H{H:] . Wy ]S{ Wi, Wy ) + L,I(H:I . -H’TE }

%(11‘1.11‘1} = ‘H[n‘l.n‘g} Eﬂ(h‘l_n‘l) + P.(wy,m3)

E;‘(H'l.wlj = @,y )G )

P.(w;wy) = |p(nwy) " P, (wpwy) = By




Power Sprectrum Equalization

1

|¢5(“’1-.“'1) 2

F,(m.m1)
P (w.wy)

_I_

[H Gy, y) ’

This filter may be thought of as being the geometric
mean of the inverse filter and Wiener filter and is
sometimes referred to as the homomorphic filter.

Note that this formulation only determines the mag-
nitude of the restoration filter.
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Homomorphic Filter
Behavior

1

|4;:5{11r1, Wy }| = T
B(mwi.m) ) |

‘._ |H(w1._w])1 TP Oww) P (wy,w,) |

e When noise is small S,(w) = 0,

‘Qﬁ( W)‘ Hl,.w+|

which is the magnitude of the inverse filter and
is similar to the behavior of the Wiener filter.

¢ When Sy(w) a0,

‘gzﬁ( w)‘ — 0,




Homomorphic Filter

Behavior
|¢":“'1=Wz}|=_ IP( )) T
' - W, W
‘I.|H[u1._ujj1 + B Hj} |
e When H(w) = 0,
|¢( )‘ - q;{w“

which is distinctly different from the Wiener filter
which would have resulted in a zero estimate.
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Maximum a Posteriori (MAP)
Filter

g = [h|f +n

Given the blur matrix [h], the probability distribu-
tion p,(n) of the noise n, and the probability distri-
bution p;(f) of the original scene f, find the solution
f which maximizes p(f|g), the conditional probabil-
ity of the object given the recorded image.

The MAP technique allows the incorporation of sta-
tistical a priori knowledge about the signal and the
noise in the restoration process.

36




MAP Filter

The MAP solution f seeks an original scene which
most likely gave rise to the recorded 1mage. The

MAP estimate is the solution to the set of equations
d - s, A
—Inip(g|f +ZInlps(H)l=0
af : )} af \“f ]

which are usually nonlinear in f.

37




MAP Filter Special Case:
Gaussian Signal and Noise

For the signal, assume a Gaussian distribution with
nonstationary mean f and nonstationary covariance
matrix [K;]. For the noise, assume a zero-mean
Gaussian distribution with covariance matrix [K,|:

[p,-(f) = o exp |~ (F —F)/(K/)N(E - ?)}J

ks

pa(n) = b ezp{—zn'(K,| 0]

Plelf) = o ezp |~ (& ~ (b)) (& ~ [hlF)]

38



Linear MAP Filter

The MAP solution in this case is a linear filter:

[h]t[Kn]_l(g — [h]i:) - [KI]‘I(f ~f)=0

f - ((h]'(K.]"'[h] + K ™7 ((h'(K. g + [K,]f)

which is of the form

f=[wlg+b

39




Linear MAP Filter

where
H*(w
ST
and
Sp(w
B(w) -t

= 6. F(w)
2 , Splw
|H(w)| + S"f' E‘*;

Under the assumption that F'(w) = G(w), and

Salw ,
'3#,'((?..‘) = 7, we get

_ H*w) +9
HRl) = )T+~

40



Summary of Linear Filters

Inverse Filter ==
f(w)

Wiener Filter < (w');. ()

f \ (9 1
(w ] |* -*— »
|H \ I S .tl.,.
1
. |
Homomorphic | 5 Tw)
| f \ 9 “_m ;.A.:
lw)|* ~—P—
“H (W ) +--\~':~*¥,"
+ J \ . .\"- "‘ A/ 'I'
H*¥w) + 52
\ ’ .) f l' a."

Linear MAP —— A 5
|H (w)|? + 2%y
N ! o '~"‘L~',

. l‘f:|.u. |
‘onstrai -S %
Constrained L-S H( 2+ P2



