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EE421/521
Image Processing

Lecture 10a
NOISE FILTERING

Introduction




° Problem: Noise in the Image
Imaging
System
Original Image Noisy Image
(random variations of intensity)
3
[

Noise Filtering

f g restoration £
noise scheme
f: original object g=f+n
g: distorted noisy image
f: restored image g =f+n(f)
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Signal Independent
Additive Noise

9(%,5) = f(5,7) + n(z,7),

n(z,7) is a signal-independent random noise process.

Example

e Quantization noise: Quantization of image den-
sity values to 8-bits introduces signal-independent
noise with a uniform distribution.

e Communication Noise: The noise in the com-
munication channel may sometimes be modelled
as a signal-independent Gaussian noise.

Signal Dependent
Additive Noise

Images at low light levels are corrupted by the Pois-
son noise associated with the discrete nature of light.

T Poisson s
f(&,7) gz, 7
SO Random Number _(ﬁj)

Generator

9(2,7) = F(5,7) + np(3, )
n,(2, 7) has zero mean and a variance equal to f(z, 7).

Signal to noise ratio (SNR) deteriorates as the aver-
age number of photons decreases
20 -
SNR = f2 9) _ ¢4, 5)
or(1,7)

Example: Medical imaging, Astronomical imaging.
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Noise Sources

o Shot (photon, film grain) noise
Caused by variation in the number of photons
Signal dependent, Poisson (similar to Gaussian)
o Salt-and-pepper (spike) noise
Caused by dead pixels, dust, scratches
Signal independent, impulsive
o Quantization noise
Caused by CCD quantization
Signal independent, uniform

Noise Distributions

Salt & Pepper Uniform




Other Noise Sources:
Sinusoidal Noise

ab
@fa!

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

Noise Filtering Methods

o Linear shift invariant (LSI) filtering
Low-pass filtering
LMMSE (Wiener) filter

o Locally adaptive (shift-varying) filtering
Local LMMSE filter
Directional smoothing

o Nonlinear filtering
Median filter

10
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Noise Filtering

° Low-pass Filtering

Additive, signal-independent, white noise

g(n,n,) =s(n,n,) +v(n,;,n,)

. i / \\* Noise
Noisy image

Noise-free image

Signal-to-noise
ratio in dB:

viE) S(F)
F
| Tradeoff between noise reduction and blurring. 12
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° Mean Filtering

o Approximates low-pass filtering
g(ny,ny) = s(n,ny) +v(n,,n,)

n 1
s(n,n,) =— Eg(”l,nz)
(n,my JER

N: Local neighborhood of (7,,,)

N': Total number of pixels in X

13

° Mean Filtering
(in a 3x3 neighbourhood)

10 {10 [10 |10 |10 |10
10 |10 |10 [10 |11 |10
10 [10|1 |10 |10 |10 9
10 |10 |10 |10 |10 |12 10
10 |10 [10 [10 |8 [10
10 {1010 [10 |10 |10

original mean filtered

14
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Median Filtering

o
(Order-Statistic Filtering)
o A non-linear filter that is edge preserving since
it easily rejects outliers, avoids blurring edges
§(n,ny) = Med{g(i,i,)} for (i,,i,) Efilter support
15
° Median Filtering
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10 10

0 10

10 W 10
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10 12

median filtered
16
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° Mean vs. Median Filtering
unssian
Sh.ot
Noisy image :c\i/lltz?igd ?i/lltz(:ciaadn
° Linear Minimum Mean Squared Error

(LMMSE) Filtering s

Find /4 to minimize ||§—S||

g =5+V  Observation model

§= hg Linear filter

18
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Linear Minimum Mean Squared Error
(LMMSE) Filtering s

Find /A to minimize ||§—S||

g =S+V Observation model

Linear filter

U
I

eyl
oQ

e=S§—s Estimation error
el hg MMSE achieved by orthogonality

el g becasuse € is perpendicular to the space spanned by /’lg
19

LMMSE Filtering

Orthogonality principle:

Estimation error is
S—s1 g orthogonal to observation

Thus

E{[3(n1,n2) — s(n1,n2)]g(k1,k2)} =0, V (n1,n2) and (k1,ks)

’ Linear time-invariant filter ‘

s(ni,mg) = E (i1,22)g(n1 — i1, n2 — i2)

where

20
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LMMSE Filtering

’ Stationary signal assumption ‘

Zle(il.ig)E{g(n] —i1,m0 —i2)g(k1, k2)} = E{s(n1,n2)g(k1, k2)}

n

Rgg(ny—iy—ky.no—inz—ka) Ryg(n1—ky ma—ko)

The discrete Wiener-Hopf equation (noncausal, IIR Wiener filter):
h(ny,ng) * %Ryy(n1,n2) = Ryy(n1,n2)

In the frequency domain

21

Optimum LTI Filter for
Additive Noise Model

» Assume that the image and noise are wss, zero-mean, and
uncorrelated. Then, given the additive noise model,

: E{S‘(il,iz Veg(i, —n,,i, — nz)}
= E{S(il J1,)s(d, —ny i, — 1, )} +E[S(f1 (i, —ny i, —n, )}
= E{(s(i,.i,) +v(i.i,) \s(i, —n,.i, = n,)) +v(i, —n,,i, —n,))}

:[Rﬂ (n,.n,)+ R, (n,, ""'z)]

* The LMMSE noise removal filter is given by

PG
{H“’fz) &(ﬂ:f:)+&(ﬁ:f:)}

22
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Local (Space-Varying)
LMMSE Filtering

’ Space-varying filter ‘

s(ny,ny) = E Ehnl,nz (6,5,)g(ny = 4y,n, = 1)
[ i

Orthogonality principle ’ Non-stationary signal ‘

E Ehnl,nz (i1, Ryo (nynysk =iy, L =i)) = Ry (ny, 5k, 1)

23
Local (Adaptive) LMMSE
Filtering

Assume that the neighboring pixels are uncorrelated:

w(n,n,) = s(n,n,) - u,(n,n,)
R, (numyskD) = 0 (n,n)O (k)|
where the local mean and variance are allowed to be
space-varying: 1,1 0,1 1,1
1
u,(n,n,) = E[s(n;,n,)]=— 25(”1 +k,n, +1) 1,0 00 1,0
(kR

1 11 01 1,1
O'.vz(”ls”z) = % (S(nl +k,n, +1) - u, (nlanz))z

N =y N

24
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° Local LMMSE Filtering

Likewise, define the observed residual image:

y(ny,ny) = g(n,n,) - ;ug(nlanz)
Assuming that the observation noise is zero mean, we have
ﬂg(nlanz) = u,(n,,n,)

Thus, we can write the following observation model in terms of the
residual images:

y(n,n,) =w(n,n,) +v(n,n,)

25
° Local LMMSE Filtering
Assuming that the original image and the noise are
uncorrelated we also have
R, (n.ny3k,0) = 02 (n,,m)S(k.1) |
where
0. =0 +0

26
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Local LMMSE Filtering

Hence, from the orthogonality principle

h, .. (k,l)oﬁ(n,,nz)é(k,l) =0’ (n,,n,)0(k,1)

which implies

2
Us (nl’ n2)

if (k,1)=1(0,0
052(”1’”2)"'03(”1’”2) 0 =0.0)

h, . (k1) =

0 elsewhere

27
Local LMMSE Filtering
The filtered image is then given by
2
. o
[S(nlanz) = ﬂg(nl’nZ) + ?(g(npnz) - ﬂg(nl’HZ))}
g
where
of = max(oé - 05,0)
> Approaches local averaging (box filter) when o2 is small,
- No filtering at all when o2 is large (edge-preserving).
28
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Directional Spatial Filtering

@ ® @ LIL AL
00 ® [ ] ® o e e
@ o L] LIL AL

T T, I, 1, I

o Method I Compute variances over each of the directions, apply an averaging

filter in the direction of the smallest variance.

o Method I1
T =TTTT,T;

- T; is the local LMMSE filter applied over the respective window.

Better noise reduction around edges, since at least one of the windows should

have a small variance.

29

Method Ill: Apply Averaging
Along the Detected Edge

™

o a@ o
He ol ° °
() o o n, - n

e o(l) ° .

30
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° Bilateral Filtering

Zk,l f(k: Z)w(z,g, k: l)

g(%']) - Zk,lw(iaj7 k7l)

Bilateral filtering kernel

BEAY SN2
(b)  d(i, 7, k1) =exp (— (1= k) 2+2(‘7 ) ) Smoothing weight
94

. _ Hf(")])_f(k:l)ng Range weight
() 737,k 1) =exp <_ 202 (data dependent)

@ wli, k) = d@, 5, k1) 77,k 1) Combined (bilateral) weight
31

° Bilateral Filtering

Fe w
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° Bilateral Filtering

noisy image linear time- bilateral filter .
invariant filter (edge preserving)
33

° Adaptive Median Filtering

Stage A (Zmed impulse?)
Zmin = Minimum intensity value in S,,
) Al = Zmed ~ Zmin
A2 = Zmed ~ Zmax
If A1 > 0 AND A2 < 0, go to stage B
Else increase the window size
If window size = §,,,, repeat stage A
Else output z,,.4

Zmax = Maximum intensity value in Sty
Zmea = median of intensity values in S,,

zyy = intensity value at coordinates (x, y)

Smax = maximum allowed size of S,

AL AL Stage B (Zmed is not impulse)
([ JE L)
L dhdhd Bl = Zxy 7 Zmin

B2 = Zyy T Zmax

1o

&

If B > 0AND B2 < 0, output z,,
Else output z,,.q  (zxy is impulse)

34
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° Adaptive Median Filtering

"..‘,.*.,*.ﬁé.!!!

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (¢) Result of adaptive median filtering with Sy, = 7.

= Removes impulsive noise (by using the median value)

B |ess distortion in edges (by starting with a small window
and by being able to keep the original value)
35

° Summary of Noise Filters

o LSI noise filtering

Noise reduction at the expense of spatial
blurring

o Local linear filtering
Edge-disabled
o Directional filtering
Edge-preserving
o Median filtering
Works for impulsive noise, preserves edges

36
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[
Project 1.10 (3.1)
Noise Filtering
Due 22.12.2013 Sunday
[

Local LMMSE Filtering

The filtered image is given by

2

[ﬁ(nlanz) = ﬂg("pnz) +%(g(n1>n2) - ﬂg(”lﬂnz))}

g

where

o? = max(0? - 7.0)

. 3 9 .
B Approaches local averaging (box filter) when o7 is small,

B> No filtering at all when o? is large (edge-preserving).

38
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® Problem 1.10

1. Select a monochrome image and display it.

2. Add 20 dB Gaussian noise to the image and display the result.
Use the following formula to obtain the noise variance:

255

2

v

=20dB

PSNR =10log

3. Filter the noisy image with the local LMMSE filter. Use a 3x3
window to find the local mean and variance. Display and
comment on the resulting image.

4. Repeat Step 3 with a 7x7 window.
5. Compare your results with MATLAB’ s adaptive filter.

39

® Next Lecture

o BLUR IDENTIFICATION

40
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