EE421/521
Image Processing

Lecture 11b
IMAGE RESTORATION

Introduction to
Image
Restoration

19/12/13



Image Restoration

degradation restoration
f blur and g restoration
noise scheme

f: original object
g: distorted noisy image
f: restored image

=)

Restoration Example
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° Restoration Example
° Applications

o Law enforcement

o Medical Imaging

o Space explorations

o Commercial and consumer imaging
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Restoration vs. Enhancement

RESTORATION: Undo or invert a mathematical model of

the degradation to obtain the "'ideal" image; e.g., Wiener filtering,
constrained least-squares, iterative least-squares, POCS, etc.
ENHANCEMENT: Produce a more pleasing image without
using a particular model of the degradation; e.g., sharpening by
high-frequency emphasis, contrast adjustment by histogram
equalization.

WHY IMAGE RESTORATION ?

Most serious image degradations are caused by distortion of

the Fourier phase of the image. Need to model the blurring process
accurately in order to be able to correct for the phase distortions.

7
Resolution vs Sharpness
Original signal
Enhanced signal:
Sharpened signal increased sharpness
Restored signal:
increased resolution
8
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Image Restoration

: Requi
1. Image formation model

e Type of blur (linear or nonlinear, space-variant or space-
invariant)

e Sensor transformation (density vs. exposure character-
istics of film, CCD sensor characteristics, etc.)

e Noise characterization (additive or multiplicative, signal-
dependent or signal-independent, white or colored, Gaus-
sian or other pdf)

9
[

Image Restoration Requirements

2. Restoration Framework

e Deterministic (Inverse filter, constrained least-squares,
etc.)

e Stochastic (Wiener filter, MAP, etc.)
e Linear (discrete convolution, Wiener filtering, etc.)

e Nonlinear (ML, ME, MAP, etc.)

3. Computational Algorithm

e Space domain implementation
e FFT implementation

e Iterative methods 10
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Image Degradation Model
(Space and Fourier Domain)

Space domain:

g(n,n,) = h(n,n,) *=s(n,n,) +v(n,n,)

Fourier domain:

G(w,w,)=H(w,w,)S(w, w,)+V(w,w,)

Inverse Filtering

G(w,w,) = Hw, w,)S(w, wy) +V (W, wy)

o Use mathematical inverse of the blur function to restore the
original image

A 1
S(wy,w,) = WG(Wl,Wz)
1> ""2

=S(w,w,) +
(Wl WZ) H(WI,WZ)
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Inverse Filtering:Effect of Noise

if H(w,w,) is small for w;,w,

= noise is amplified at those frequencies

if H(w,,w,) 1s zero for w;,w,

=> restored image is infinite at those frequencies

S(W15W2)=

G(w,
H(w,wy) (w,w,)

+ )
=

Pseudo Inverse Filtering

o Use pseudo-inverse to overcome the infinities at the
zeroes of the blur

G
H(prz) H(w;,w,) =0
S(W19W2)= (Wi, %2)
0 H(w,w,)=0

Still have noise amplification where H(w;,w,) 1s small.
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Optimum LTI Filter for
Restoration: Wiener Filter

o Recall the Wiener filter for the blur-free case:
Pss(wl 9 WZ)

S(w,w,) =
O, 2) P (w;,wy) + B, (w,w,)

G(w,wy)

o When there is blur we have

s(ny,n,) = h(n,n,) **s(n,,n,)

o Thus, substitute in the blur-free solution
S(wy,w,) = H(w, w,)S(w;,w,)

2
P (w,w,) = |H(W1’W2)| B, (wi,w,)

Optimum LTI Filter for
Restoration: Wiener Filter
H(WI,WZ)S(WI,Wz) = |H(VEUWZ)| £ (%) G(w,w,)

|H(W19Wz)| P (w,w,) + B, (w,w,)
& H*(Wlawz)
S(WI,W2)= G(W19W2)
[H w4 T (010102)
Pss(W]’WZ)
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Example:
Out of Focus Restoration

Out-of-focus text image Image restored by Wiener Filtering

17

Inverse vs. Wiener Filter

Wiener
filter

inverse
filter

18
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Characteristics of the
Wiener Filter

H*(Wlawz)

2 P(w,w,)
|H(W1awz)| +ﬁ
s 12772

S(w,w,) =

G(w,w,)
Noise power

Signal power

o There is no ill-conditinoned behaviour associated with
the Wiener filter

o If the noise power is zero at some frequency - we have
the inverse filter

o If the signal power is zero at some frequency —>the filter
becomes zero - we can’ t recover information at those
frequencies where the noise was completely dominant

19

Shortcomings of the Wiener
Filter

o The MMSE (minimum mean squared error)
estimate is based on linear assumptions. But
there are nonlinearities in the image recording
and the human visual system.

o The MMSE is not the criterion that the human
visual system naturally employs. MMSE
restorations in low SNR cases appear too
smooth; the human eye is often willing to accept
more visual noise in exchange for additional
image structure in the process.

20
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Example
Hplw) = H*(w)
R( ) |H(w)|2+g;($)

In the absence of any knowledge about S,(w) and
St(w), assume S,(w)/Sf(w) = =, where + is the ratio
of the noise to signal power. The Wiener filter then
becomes:
H(w)
H == ¢
= e

o 7x7 blur, 8-bit quantization ¥ = 107> works best
o 7x7 blur, 12-bit quantization ¥ =107 works best

21

Image
Restoration
Artifacts

22
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® Restoration Artifacts

+ Filtered-noise artifacts
¢ Filter-deviation (regularization) artifacts
« Boundary-truncation artifacts

+ PSF-error artifacts

23

Filtered Noise and
Regularization Artifacts

+ Let ®(w,w,) be some LSI restoration filter.

S(w,w,) =D(w,w,)G(w,,w, )</[ G, wy) = Hw, wy)S(wi, ) +V (W, w,) ]
=D (w, w,) ) H(w,,w,)S(w,,w,)+D(w,, w, )V (w,,w,)

add and subtract S(w,,w,), and rearrange terms

S(Owp,wy) =S, w,) + [<I)(wl W) H(w,w,y) — I]S(w1 Sy + DOw, W)V (wy,w,)
* In the image domain
s(X) = s(x) + 9, (x) * *5(x) + O(x) * *(x)

regularization artifacts filtered noise artifacts
24
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Restoration Artifacts

25

General Linear Regularization:
Constrained Least Squares Filter

High-pass filter

Smoothness ) A
of the solution C = 2 E (Q(m’ n)# *S(m%

m n
Restored image

| /
Matching the  m== C = E E (g (m,n) — h(m,n)*=s(m, n))z

observation
Observed image Actual blur

26
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Constrained Least Squares Filter

Relative weight

minimize C, +y C, withrespectto §(m,n)

-3 E(Q(k, DSkD)

C, = Z 2 (G(k, 1) = H(k,1)S(k, 1))Z

Due to Parseval’s relation

27

Constrained Least Squares Filter

Minimize
C +yC = Z Z ((G(k,z) - H(k,)S(k, 1))z + y(Q(k, DS(k, 1))2)

with respect to S k,1)

S(k,1) =[ If(k’l) JG(k,Z)
H (kD[ + otk D))

28

19/12/13

14



Example: Derivative Operators

H*(w)

Hel) = @+ 1P

If the operator [p] is chosen to be the first derivative,
then |P(w)|? = w?, and
H*(w)

B S Ear

One may also use the DFT 11011 0|-1]0
of the first and second 20102 Al 4 -1
derivative kernels as P (w) ML ol 10

29

Constrained Least Squares Filter

» Regularized Inversion:

) H' (w,,w,
S(w,w,) = (, W) G(w,,w,)
‘H(‘H«‘I W)+ o L(w,w,)
* Comments:
— L(wy,w,) =0 — mverse filtering.
— Lw,,wy) =1 — pseudo-inverse filtering.

BOw.w,) 5 Wiener filtering.
P (w;.w,)

Wiener filtering requires a priori mformation about the
image and noise statistics.

— L(w,, wz) =

30
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Wiener vs. Constrained
Least Squares Filter

31

Power Sprectrum Equalization

G(WI,W2) :H(WpWz)S(prz)"'V(WlaWz)
<

2
I?g(wpwz) = |H(W19W2) Ps(Wsz) +PV(W19W2)

‘§(W1’ w,) = g(w, w,)G(w;, w,)
'

2
P.(w,w,) = |¢(W19W2)| Pg(Wlawz) =P, (w,w,)

32
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Power Sprectrum Equalization

1
|¢(W19W2)| = 1/2

2 P(w,w,)
[omf Gt
s 1> 772

This filter may be thought of as being the geometric
mean of the inverse filter and Wiener filter and is
sometimes referred to as the homomorphic filter.

Note that this formulation only determines the mag-
nitude of the restoration filter.

33
Homomorphic Filter
Behavior
‘¢(W1awz)‘ = ! 12
‘H(wl,wz)‘2 +%
s, w,
e When noise is small S,(w) =~ 0,
1
00| =
which is the magnitude of the inverse filter and
is similar to the behavior of the Wiener filter.
e When Sy(w) ~ 0,
B(w)| —o.
34
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Homomorphic Filter
Behavior

1

‘¢(W1’ W, )‘ = 7
(H(anz)z + B (w,w)
P.(w,w,)

e When H(w) ~ 0,
o -[389].

which is distinctly different from the Wiener filter
which would have resulted in a zero estimate.

35

Maximum a Posteriori (MAP)
Filter

g=[h|/f+n

Given the blur matrix [h], the probability distribu-
tion p,(n) of the noise n, and the probability distri-
bution p;(f) of the original scene f, find the solution
f which maximizes p(f|g), the conditional probabil-
ity of the object given the recorded image.

The MAP technique allows the incorporation of sta-
tistical a priori knowledge about the signal and the
noise in the restoration process.

36
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MAP Filter

The MAP solution f seeks an original scene which
most likely gave rise to the recorded image. The

MAP estimate is the solution to the set of equations

%m (p(glf)) + %m GIE

which are usually nonlinear in f.

37

MAP Filter Special Case:
Gaussian Signal and Noise

For the signal, assume a Gaussian distribution with
nonstationary mean f and nonstationary covariance
matrix [K;]. For the noise, assume a zero-mean
Gaussian distribution with covariance matrix [K,]:

[mf) ~ a eap{-3(f - D[K7I(E - f)}]

=0 e BT

p(elf) = o ezp |- (g — [BIF)'[K.) (& - [BID)|

38
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Linear MAP Filter

The MAP solution in this case is a linear filter:
[h)'[K.] (g — [h]f) — K '(E-F)=0
f = ((h)'[K.]"'h] + (K] (h){K.)"g + K/ F)
which is of the form

f=[wlg+b

39

Linear MAP Filter

where
H*(w)
W(u.) =
2 , Sn(w
B ()2 + 5245
and
Sp(w
Sr(w _
B(w — f F(w)
2, Sh(w
()2 + 52

Under the assumption that F/(w) = G(w), and
—(—lg;(i) =, we get
H*(w) + 7

Rl = )y o

19/12/13
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Summary of Linear Filters

Inverse Filter 1
H(w)
Wiener Filter N ﬁ;(“’)si)
[ 3
. 1 -
Homomorphic ’|H(w)}2 D)
Sr(w)]
Sp(w
2+ 2
Linear MAP R )]
‘H("')} + ST;(UJ
. H*(u})
Constrained L-S HZ+ Wipfm

41

Project 3.2b

Image Restoration
Due 29.12.2013 Sunday

42
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Problem 3.2 Image Restoration
with Wiener Filter

1. Select a 512x512 monochrome image and display it.
2. Blur the image with a uniform 16x16 blur. Display the blurred image.

3. Add 20 dB Gaussian noise to the blurred image and display the
result.

4. Divide the image into 64x64 regions, apply Hanning window to all
regions. Display the image with Hanning windows applied.

5. Calculate the 2-D DFT of all regions and compute the 2-D power
spectrum of the observed image as

B = SIDFT ofe,

-
6. Compute the variance of the noise using nearly uniform regions
(calculate the variance in each block, then average these variances).

7. Compare it with the actual value given in Step 3.
43

Problem 3.2 (cont.)

1. Calculate the frequency response of the Wiener filter as (use the given noise
variance)

ok, = — LD

o Pk, 1) = max(P, (k,1) - 77.0)
PkD)

[H (k1) +

2. Plot the above filter frequency response and comment on its characteristics.

3. Obtain the filter impulse response by computing the 64x64 inverse DFT of
the fiter frequency response. Plot the impulse response and comment on its
shape.

4. Convolve the 512x512 blurred and noisy image with the Wiener filter impulse
response to obtain the restored image. Display the restored image and
comment on its characteristics.

5. Compare your result with MATLAB’ s Wiener filter.

44
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Image
Restoration
with POCS

® Convex Set

e A closed convex set C ind#

( is convex iff forany xandy in C,zdefined by

z é,u.x+(]—y)y (0<p<l)

isalsoin C.
@

19/12/13
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Projection onto a Convex
Set

\

Poe= =

min | fo-yll = llfo_ Pfoll
yeC -

47

Convergence

To find a point in the intersection of m closed convex
sets 01, 02,..., Cm in a Hilbert space start with an
arbitrary initialization function f; and perform suc-
cessive projections onto convex sets. The sequence

{fr} generated by

P Py P fk = fr
converges weakly to a point of (_ = /T} Ci

48
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o ‘ Successive Projections

P
f CI

0
p\ fl

At

s 3 e
RRio BRf Gn 7

S N
Co

f fo

fk+'= P2P| fk ’ k=o,|t--

49

L The Method of POCS

» Define closed, convex constraint sets,

* A projection operator P, maps an arbitrary point to the
closest point in C.

» Solution set 1s intersection of

all constraint sets

+ Start with an arbitrary initial
estimate, then project onto

all constraint sets iteratively

» Relaxed projection operators, T=(1- M) I+ AP, 0<A<2

25



o POCS Example:

Solving a Linear System of Equations

T

. x=b, i=1....M

isan M x1 vector of unknowns

SIxIR

-

i=1,...,M arescalars

i=1,...,M are M x1 coefficient vectors

I

i

a, a, ... a, |[x b,

Ay, Ay, - Ay |lXy b,

51

Solution of a Set of Linear

[
Equations
c_lT b 1 <—— Eachrow represents
.1 : a constraint
Dlx =
ay b,
Converged

solution

initial
estimate

19/12/13
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® Solution via POCS

53

o POCS: Example (cont’ d)

Projection of an arbitrary M x1 vector y onto C,

Minimize H Z‘EHZ under the constraint that g, x = b,
Thus, we need to find x that minimizes

HZ‘EHz + /1( a; x - bl-)= E(x,2)

then we say that x is the projection of y onto set C,

ad d
—FE(x,A)=0 and —E(x,A)=0
ox (x,4) Y] (x,4)

54
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POCS: Example (cont’ d)
;xE(x,z.) =0 = -2(y-x)+2a, =0

D=x=y-—a,
D=x=y 5%
Substitute this into the constraint equation

i

T A« T A T
a.|ly-—a. |=b.=a yv—-—a.a =b.
- (y 21) =1 =1 X 271 =i =i

a; y_éi ..
A=2 ; >— put thisinto (1)
and finally
ax—-b=0 \/ﬁwaif):;“‘\\ o
—_ E#‘X_ ay 271 Qi}//' Projection ofX onto C,
\ “ j 55

—————e e~

POCS: Example (cont’ d)

C, Y Define projection operator P
such that
C, .
ay -b

Py=y-—=5"3
o

Cu Algorithm
x=(P,...B,R)P,...B,R)y

C, 55
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® ‘ Convex Sets for Restoration

Co={fl llg - hIfi? < &)

57

® Convex Sets for Restoration

Cp={E] [6(k) - H(¥)F(¥)]* < )

Cn: {ﬂ fiZO}

The quantity r =g — [h]f is called the residual.

58
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® Image Restoration Using POCS

e Each a prior: information and constraint restrict
the function f to a closed convex set in a Hilbert
space.

e Thus, for m pieces of information there are m
closed convex sets Ci, 1=1,2,...,m and

felqs=0) €
e Given (; and their projectors P,

flc+1:Pm Pm—l"'Pl.fk

converges to a solution in the intersection Co.

59

® Next Lecture

o IMAGE RECONSTRUCTION

60
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