

Computer Networks I 3rd stage

Lecture No. 5 Transport Layer

DR. Lecturer . Taqwa.F.Hassan

Computer Department - College of Engineering University of Diyala

2021-2022

Transport services and protocols

- provide logical communication between app processes running on different hosts
- transport protocols run in end systems
 - send side: breaks app messages into segments, passes to network layer
 - rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - Internet: TCP and UDP

Transport vs. network layer

- * network layer: logical communication between hosts
- * transport layer: logical communication between processes
 - relies on, enhances, network layer services

Internet transport-layer protocols

- reliable, in-order delivery (TCP)
 - congestion control
 - flow control
 - connection setup
- unreliable, unordered delivery: UDP
 - no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones" Internet transport protocol
- "best effort" service,
 UDP segments may be:
 - Iost
 - delivered out-of-order to app
- connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

- UDP use:
 - streaming multimedia apps (loss tolerant, rate sensitive)
 - DNS
 - SNMP
- reliable transfer over UDP:
 - add reliability at application layer
 - application-specific error recovery!

Principles of reliable data transfer

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- Iow controlled:
 - sender will not overwhelm receiver

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters


```
application

connection state: ESTAB

connection Variables:

seq # client-to-server

server-to-client

rcvBuffer Size

at server,client

network
```

TCP: closing a connection

client, server each close their side of connection

- send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for network to handle"
- * different from flow control!
- manifestations:
 - Iost packets (buffer overflow at routers)
 - Iong delays (queueing in router buffers)
- * a top-10 problem!

Thank you for listening

Taqwa Altameemi