
Computer Networks I
3rd stage

Lecture No. 4

Application Layer

DR. Lecturer . Taqwa.F.Hassan

Computer Department - College of Engineering

University of Diyala

2021-2022

1

Outline

2.1 Principles of network applications

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail

▪ SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2

Application layer

Our goals:

❖ conceptual,
implementation aspects
of network application
protocols

▪ transport-layer
service models

▪ client-server
paradigm

▪ peer-to-peer
paradigm

❖ learn about protocols
by examining popular
application-level
protocols
▪ HTTP

▪ FTP

▪ SMTP / POP3 / IMAP

▪ DNS

❖ creating network
applications

3

Some network apps

❖ e-mail

❖ web

❖ text messaging

❖ remote login

❖ P2P file sharing

❖ multi-user network
games

❖ streaming stored
video (YouTube, Hulu,
Netflix)

❖ voice over IP (e.g., Skype)

❖ real-time video
conferencing

❖ social networking

❖ search

❖ …

❖ …

2-4

Creating a network app

write programs that:

❖ run on (different) end systems

❖ communicate over network

❖ e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

❖ network-core devices do not run
user applications

❖ applications on end systems
allows for rapid app
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

2-5

Application architectures

possible structure of applications:

❖ client-server

❖ peer-to-peer (P2P)

2-6

Client-server architecture

server:
❖ always-on host

❖ permanent IP address

❖ data centers for scaling

clients:
❖ communicate with server

❖ may be intermittently
connected

❖ may have dynamic IP
addresses

❖ do not communicate directly
with each other

client/server

2-7

P2P architecture
❖ no always-on server

❖ arbitrary end systems directly
communicate

❖ peers request service from other
peers, provide service in return to
other peers

▪ self scalability – new peers bring
new service capacity, as well as
new service demands

❖ peers are intermittently connected
and change IP addresses

▪ complex management

examples:

▪ file distribution (BitTorrent)

▪ Streaming (KanKan)

▪ VoIP (Skype)

peer-peer

2-8

Pure P2P architecture

❖ no always-on server

❖ arbitrary end systems
directly communicate

❖ peers are intermittently
connected and change IP
addresses

2-9

Processes communicating

process: program running
within a host

❖ within same host, two
processes communicate
using inter-process
communication (defined by
OS)

❖ processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

❖ aside: applications with P2P

architectures have client

processes & server

processes

clients, servers

2-10

Sockets

❖ process sends/receives messages to/from its socket

❖ socket analogous to door

▪ sending process shoves message out door

▪ sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

2-11

Addressing processes

❖ to receive messages,
process must have identifier

❖ host device has unique 32-
bit IP address

❖ Q: does IP address of host
on which process runs
suffice for identifying the
process?

❖ identifier includes both IP
address and port numbers
associated with process on
host.

❖ example port numbers:
▪ HTTP server: 80

▪ mail server: 25

❖ to send HTTP message to
gaia.cs.umass.edu web
server:
▪ IP address: 128.119.245.12

▪ port number: 80

❖ more shortly…

▪ A: no, many processes
can be running on same
host

2-12

App-layer protocol defines

❖ types of messages
exchanged,

▪ e.g., request, response

❖ message syntax:

▪ what fields in messages
& how fields are
delineated

❖ message semantics

▪ meaning of information
in fields

❖ rules for when and how
processes send & respond
to messages

open protocols:

❖ defined in RFCs

❖ allows for interoperability

❖ e.g., HTTP, SMTP

proprietary protocols:

❖ e.g., Skype

2-13

What transport service does an app need?

data integrity

❖ some apps (e.g., file transfer,
web transactions) require

100% reliable data transfer

❖ other apps (e.g., audio) can
tolerate some loss

timing

❖ some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

❖ some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

❖ other apps (“elastic apps”)
make use of whatever
throughput they get

security

❖ encryption, data integrity,

…

2-14

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s

msec

yes, few secs

yes, 100’s

msec

yes and no

2-15

Internet transport protocols services

TCP service:
❖ reliable transport between

sending and receiving
process

❖ flow control: sender won’t
overwhelm receiver

❖ congestion control: throttle
sender when network
overloaded

❖ does not provide: timing,
minimum throughput
guarantee, security

❖ connection-oriented: setup
required between client and
server processes

UDP service:
❖ unreliable data transfer

between sending and
receiving process

❖ does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

2-16

Internet apps: application, transport protocols

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

2-17

Web and HTTP

First, a review…
❖ web page consists of objects

❖ object can be HTML file, JPEG image, Java applet,
audio file,…

❖ web page consists of base HTML-file which
includes several referenced objects

❖ each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

2-18

HTTP overview

HTTP: hypertext
transfer protocol

❖ Web’s application layer
protocol

❖ client/server model
▪ client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

▪ server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

2-19

HTTP overview (continued)

uses TCP:
❖ client initiates TCP

connection (creates
socket) to server, port 80

❖ server accepts TCP
connection from client

❖ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

❖ TCP connection closed

HTTP is “stateless”
❖ server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

❖ past history (state) must be
maintained

❖ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

2-20

HTTP connections

non-persistent HTTP

❖ at most one object
sent over TCP
connection

▪ connection then
closed

❖ downloading multiple
objects required
multiple connections

persistent HTTP

❖ multiple objects can
be sent over single
TCP connection
between client, server

2-21

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

2-22

Cookies (continued)

what cookies can be used
for:

❖ authorization
❖ shopping carts
❖ recommendations
❖ user session state (Web

e-mail)

cookies and privacy:

❖ cookies permit sites to
learn a lot about you

❖ you may supply name and
e-mail to sites

aside

how to keep “state”:
❖ protocol endpoints: maintain state at

sender/receiver over multiple
transactions

❖ cookies: http messages carry state

2-23

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

❖ transfer file to/from remote host
❖ client/server model

▪ client: side that initiates transfer (either to/from remote)

▪ server: remote host

❖ ftp: RFC 959
❖ ftp server: port 21

2-24

Electronic mail

Three major components:
❖ user agents

❖ mail servers

❖ simple mail transfer
protocol: SMTP

User Agent
❖ a.k.a. “mail reader”
❖ composing, editing, reading

mail messages

❖ e.g., Outlook, Thunderbird,
iPhone mail client

❖ outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

2-25

Electronic mail: mail servers

mail servers:
❖ mailbox contains incoming

messages for user

❖ message queue of outgoing
(to be sent) mail messages

❖ SMTP protocol between
mail servers to send email
messages

▪ client: sending mail
server

▪ “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

2-26

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

❖ header lines, e.g.,
▪ To:

▪ From:

▪ Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

❖ Body: the “message”
▪ ASCII characters only

header

body

blank

line

2-27

Mail access protocols

❖ SMTP: delivery/storage to receiver’s server

❖ mail access protocol: retrieval from server

▪ POP: Post Office Protocol [RFC 1939]: authorization,
download

▪ IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

▪ HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent

user

agent

2-28

DNS: domain name system

people: many identifiers:

▪ SSN, name, passport #

Internet hosts, routers:

▪ IP address (32 bit) -
used for addressing
datagrams

▪ “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
❖ distributed database

implemented in hierarchy of
many name servers

❖ application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

▪ note: core Internet function,
implemented as application-
layer protocol

▪ complexity at network’s
“edge”

2-29

Thank you for listening

Taqwa Altameemi

2-30

