Computer Networks I

3rd stage

Lecture No. 4

Application Layer

DR. Lecturer . Tagwa.F.Hassan

Computer Department - College of Engineering
University of Diyala

2021-2022

Outline

2.1 Principles of network applications

2.2 Web and HTTP
2.3 FTP

2.4 electronic mail

= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application layer

Our goals:

% conceptual,
implementation aspects
of network application
protocols

" transport-layer
service models

= client-server
paradigm
" peer-to-peer
paradigm

<+ learn about protocols

by examining popular
application-level
protocols

» HTTP

= FTP

= SMTP / POP3 / IMAP

= DNS

% creating network
applications

Some network apps

<+ e-mail

% web

» text messaging
% remote login

<+ P2P file sharing

< multi-user network
games

» streaming stored
video (YouTube, Hulu,
Netflix)

voice over IP (e.g., Skype)

real-time video
conferencing

social networking
search

2-4

Creating a network app

write programs that:

\/
0’0

\/
0’0

\/
0’0

no need to write software for

o0

o0

application
transport
network
data link
physical

run on (different) end systems
commuhnicate over network

e.g., web server software
communicates with browser
software

network-core devices

network-core devices do not run
user applications

applications on end systems
allows for rapid app
development, propagation

2-5

Application architectures

possible structure of applications:
% client-server
+ peer-to-peer (P2P)

2-6

Client-server architecture

server.

<+ always-on host

<« permanent |IP address
+ data centers for scaling

clients:
< communicate with server

may be intermittently
connected
<+ may have dynamic IP
addresses

« do not communicate directly
with each other

K/
0’0

2-7

P2P architecture

g

» no always-on server

» arbitrary end systems directly
communicate

+ peers request service from other
peers, provide service in return to
other peers

" self scalability — new peers bring
new service capacity, as well as
new service demands

» peers are intermittently connected
and change IP addresses

= complex management

>

examples:
= file distribution (BitTorrent)
= Streaming (KanKan)

= VolP (Skype)

peer-peer

Pure P2P architecture

» no always-on server

» arbitrary end systems
directly communicate

» peers are intermittently
connected and change IP
addresses

2-9

Processes communicating

process: program running - clients, servers
within a host client process: process that
<+ within same host, two initiates communication

processes communicate
using inter-process

communication (defined by
O5)

server process: process that
waits to be contacted

<>

L)

- processes in different hosts
communicate by exchanging < aside: applications with P2P

MESSages architectures have client
processes & server
processes

L)

2-10

Sockets

% process sends/receives messages to/from its socket
+ socket analogous to door
= sending process shoves message out door

* sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

application application

controlled by
app developer

socket
‘\\\\\\\\

controlled

by O
\

Internet

A
v

2-11

Addressing processes

+ to receive messages, <+ identifier includes both [P
process must have identifier address and port numbers
+ host device has unique 32- associated with process on
bit IP address host.
« @Q: does IP address of host + example port numbers:
on which process runs = HTTP server: 80
suffice for identifying the = mail server: 25
process! % to send HTTP message to
= A: no, many processes gaia.cs.umass.edu web
can be running on same server:
host " [P address: 128.119.245.12

" port number: 80
- more shortly...

*

L)

L)

2-12

App-layer protocol defines

+ types of messages open protocols:

exchanged, + defined in RFCs

" e.g, request, response + allows for interoperability
< message syntax: + e.g, HTTP, SMTP

" what fie!ds in messages proprietary protocols:
& how fields are
+ e.g., Skype

delineated
+ Mmessage semantics

* meaning of information
in fields

< rules for when and how
processes send & respond
to messages

2-13

VWVhat transport service does an app heed?

data integrity throughput
+~ some apps (e.g., file transfer, < some apps (e.g.,
web transactions) require multimedia) require
100% reliable data transfer minimum amount of
throughput to be

<« other apps (e.g., audio) can

b . ”
tolerate some loss effective

» other apps (" elastic apps”)
make use of whatever
throughput they get

>

L)

D)

timing
% some apps (e.g., Internet
telephony, interactive

games) require low delay . . .
to be “effective” < encryption, data integrity,

security

2-14

Transeort service reguirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps yes, 100’ s
video:10kbps-5Mbps msec

stored audio/video

loss-tolerant

same as above

Interactive games loss-tolerant few kbps up yes, few secs
text messaging no loss elastic yes, 100’ s
msec

yes and no

2-15

Internet transport protocols services

g

TCP service:

R/
0’0

0

0

D)

0

D)

o0

L)

reliable transport between
sending and receiving
process

flow control: sender won’ t
overwhelm receiver

congestion control: throttle
sender when network
overloaded

does not provide: timing,
minimum throughput
guarantee, security

connection-oriented: setup
required between client and
server processes

UDP service:

< unreliable data transfer
between sending and
receiving process

<« does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

2-16

Internet apps: aEEIication, transport Erotocols

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) TCP or UDP

2-17

Web and HT TP

First, a review...
+ web page consists of objects

+ object can be HTML file, JPEG image, Java applet,
audio file,...

+ web page consists of base HTML-file which
includes several referenced objects

% each object is addressable by a URL, e.g.,

www . someschool.edu/someDept/pic.gif

——— ——

host name path name

2-18

HTTP overview

HTTP: hypertext
transfer protocol

» Web’ s application layer
protocol PC running

+ client/server model Firefox browser

= client: browser that
requests, receives,
(using HT TP protocol)
and displays Web
objects

= server: Web server
sends (using HTTP
PrOtOCOI) (@) leCtS IN iphone running
response to requests Safari browser

server
running
Apache Web
server

2

2-19

HTTP overview (continued)

uses TCP: HTTP is ‘stateless ~

« client initiates TCP % server maintains no
connection (creates information about
socket) to server, port 80 past client requests

« server accepts TCP
connection from client aside -

protocols that maintain
11 7
state’ are complex!

past history (state) must be
maintained

< HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server views of “state” may be

(HTTP server) inconsistent, must be
% TCP connection closed reconciled

X/
0.0

< if server/client crashes, their

2-20

HT TP connections

non-persistent HT TP

% at most one object
sent over TCP
connection

=" connection then
closed

+» downloading multiple
objects required
multiple connections

persistent HTTP

+ multiple objects can
be sent over single
TCP connection
between client, server

2-21

Cookies: keeping “state” (cont.)

client q

V

ebay 8734 |mms

usual http request msg

cookie file

usual http response
set-cookie: 1678

<
ebay 8734
amazon 1678

—

—

usual http request msg
cookie: 1678

\»

<+

usual http response msg

one week later:

ebay 8734 —_

amazon 1678

usual http request msg
cookie: 1678

—

usual http response msg

cookie-
specific
action

cookie-
specific
action

server

Amazon server
creates ID
1678 for user

Create backend
entry\database

/
access

/

access

2-22

Cookies (continued)

what cookies can be used cookies and privacy:
for:

authorization

shopping carts

recommendations

user session state (Web
e-mail)

aside

< cookies permit sites to
learn a lot about you

J
0’0

X/
0’0

< you may supply name and
e-mail to sites

J
0’0

X/
0’0

how to keep ‘state :

» protocol endpoints: maintain state at
sender/receiver over multiple
transactions

» cookies: http messages carry state

2-23

FTP: the file transfer protocol

file transfer
FTP |e » FTP
client server

interface

remote file
system

local file
system

()

+ transfer file to/from remote host
+ client/server model
= client: side that initiates transfer (either to/from remote)

>

= server: remote host

ftp: RFC 959
ftp server: port 21

X4

L)

L)

*

2-24

Electronic mail
e EEE—— S
Three major components:
< user agents

< mail servers

<+ simple mail transfer
protocol: SMTP

User Agent

11 o ””
a.k.a. “mail reader
« composing, editing, reading
mail messages

- e.g., Outlook, Thunderbird,
iPhone mail client

> outgoing, incoming
messages stored on server

o
hS

*

>

L)

L)

>

L)

L)

mail
server

00000

mail
server

00000

user
agent

outgoing

message queue

[1 user mailbox

2-25

Electronic mail: mail servers

mail servers:

» mailbox contains incoming
messages for user

+ message queue of outgoing
(to be sent) mail messages

% SMTP protocol between

mail
server

00000

mail servers to send email SMTP
messages
= client: sending mail .
mail
server

server

= “server’: receiving mail I

server

2-26

Mail message format

SMTP: protocol for

ging g . header olank

RFC 822: standard fcy) line
message format:
+ header lines, e.g.,
= To:
" From:
= Subject:
different from SMTP MAIL
FROM, RCPT TQ*
commands!
» Body: the “message”
= ASCII characters only

2-27

Mail access protocols

i mall access -

gm (el SMTP SMTP protocol__ |aaan b/ L 3

“ e.g., POP, i
q,& [T (&9 - ¢

g 00000 00000 IMAF) "N

sender’ s mail receiver’ s malil
server server

= SMTP: delivery/storage to receiver s server
« mail access protocol: retrieval from server

= POP: Post Office Protocol [RFC 1939]: authorization,
download

= |[MAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

= HTTP: gmail, Hotmail, Yahoo! Mail, etc.

2-28

DNS: domain name system

people: many identifiers: Domain Name System:
= SSN, name, passport # « distributed database
Internet hosts, routers: implemented in hierarchy of
= |P address (32 bit) - many name SErvers
used for addressing <« application-layer protocol: hosts,
datagrams name servers communicate to

" “name”, eg, resolve names (address/name

www.yahoo.com - translation)
used by humans = pote: core Internet function,

implemented as application-

Q: how to map between IP
layer protocol

address and name, and . ,
vice versa ! " complexity at network' s
”

2-29

Thank you for listening

Tagwa Altameemj

2-30

