Numerical Analysis Lecture Second con

Example(3.1)

Estimate the natural logarithm of 2 using linear interpolation. First, perform the
computation by interpolating between In (1) =0 and In (6) = 1.791759. Then,
repeat the procedure, but use a smaller interval from (n (1) to In (4) = 1.386294.
Note that the true value of In (2) is 0.6931472.

Solution

We use a linear interpolation for (2) from x, =1 to x; = 6 to give

Y1) = y(xg) + LED YD) oy
X1 — Xo

1.791759 - 0
6—1

y1(2) =0+ (2—-1) = 0.3583519

Using a smaller interval from xo=1to x; =4

1.386294 -0
4—-1
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y1(2) =0+ (2—-1) = 0.4620981

B- Quadratic Interpolation

a strategy for improving the estimate is to introduce some curvature into the
line connecting the points. This can be accomplished with a second order
polynomial. If three data points are available, this can be accomplished with a
second-order polynomial (also called a quadratic polynomial or a parabola).

A simple procedure can be used to determine the values of the
coefficients

(%0, £ (20)), (X1, F (1)), (X F(K2)) v O e

(xp)—f(xo)
flxg, xp) =L Sx0) L Q)

X1—X0
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f(x2)—f(x1)

X2—X1

f(xq1,x2) — f(x0,%1)

X2 — Xo

. (4)

f(xg,x1,%2) =
fG) = fxo) + (x — x0) f (x0, %1) + (x — x0) (X — x1)f (%0, X1, X2).. (5)
s ok o ok o ok ok o ko ok ok ok
example : Find V7 from [3\'/8 =1.82, V8 = 2, Y9 = 2. 01]
Using Quadratic Interpolation

Solution:

1- x0=6  f(x0)=1.82 , x,=8 [f(x1)=2 , x,=9 f(x,)=2.01
2-1.82 _ 0.18

2- f(6,8) = === =22=10.09
3-f(8,9) === =22 =0.01
4- £(6,8,9) = 22— = == = —0.0267

5 f(7) = 1.82 4 (7—6) % 0.09 + (7 — 6)(7 — 8) x —0.0267 = 1.9367
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Example (3.2)

Fit a second-order polynomial to the three points used in Example (3.1)

Solution
1-
xo =1 f(x) =0
x; =4 f(x;) = 1.386294
x, =6  f(x) =1.791759
1.386294-0
2- f(x9,x1) = —— ;0462098

1.791759-1.386294 0.405465
3- f(x1,x2) = — = ——— =0.2027325




Numerical Analysis Lecture Second con

_ 0.2027325-0.462098

4-
6—-1
_ f(x1,x2)—f(x0,x1)
f(x(), X1, xZ) - X7—%o
—0.2593655
f(xg,x1,x2) = S = —0.0518731

fxX)=0+(x—-1)%0.462098 — (x —1)(x—4) *0.0518731

f(2)=0+(2—-1)%0.462098 — (2 —1)(2 — 4)  0.0518731 =
0.5658442
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General Form of Newton’s Interpolating Polynomials

The preceding analysis can be generalized to fit an nth-order polynomial to (n
+ 1) data points. The nth-order polynomial is

Yn(x) = by + b1(x — x¢) + -+ + by (x — x¢) (x — X1) ... (X — Xp_4)
As was done previously with the linear and quadratic interpolations, data
points can be used to evaluate the coefficients by, b,, . . ., bn. For an nth order
polynomial, n + 1 data points are required :(o, Vo ), (X1, V1), (Xn, yn ). We use
these data points and the following equations to evaluate the coefficients:
by = f(xo)
by = f(x0,x1)

b, = f(xo,xbxz)

b, = f(xg, X1, ..o, Xp—1, X)

The
bracketed function evaluations are finite divided differences. For example, the
first finite divided difference is represented generally as
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The second finite divided difference, which represents the difference
of two first divided differences, is expressed generally as

_ f(xi) — f(xj)

xi—x]'

flxi ;]

Sl = x] = flx - ]

X, X, X | =
f[ i j k] X; — X
Similarly, the nth finite divided difference is
f[xll RLED) xn—ll xn] - f[l xOI e xn—Z; xn—l]
flxo, x1, o, Xn_q, X5] =
Xn — Xo
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Example (3.3)

In Example (3.2), data points at xo =1, x; =4, and x, = 6 were used to estimate
In (2) with a parabola. Now, adding a fourth point [x3 = 5; f (x3) = 1.609438],
estimate [n (2) with a third-order Newton’s interpolating polynomial.

Solution
The third-order polynomial with n =3, is

y3(x) = by + by (x — x¢) + by(x — x0)(x — x1) + b3 (x — x0) (x — x1) (x — x3)
_fGa) —f(xo) _1.386294 -0

Flxo, x.] = — T = 04620981
) — f(x) 1791759 — 1.386294
,x,] = = = 0.2027326
flx1, x,] P 6_4
x3) — f(x,) 1.609438 — 1.791759
Flxy, %3] _ SO =) = 0.1823216
X3 - xz 5 - 6

The second divided differences are
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0.2027326 — 0.4620981

flx0, %1, %] = 1 = —0.05187311
0.1823216 — 0.2027326
flx1, %2, %3] = =2 = —0.02041100
—0.02041100 — (—0.05187311)
fxo, %1, %2, %3] = E= 1 = 0.007865529

The result for [xo, x1 ], f[x0, X1, X2 1, f[X0, X1, X2, X3 ] represent the coefficients
b., b,, bs respectively. by = 0, so a third-order Newton’s interpolating polynomial

y3(x) = by + by (x — %) + by (x — x¢)(x — x1) + b3(x — x0) (x — x1)(x — x7)

y,(2) = 0 + 0.4620981(2 — 1) — 0.05187311(2 — 1)(2 — 4)
+0.007865529(2 — 1)(2 — 4)(2 — 6) = 0.6287686

This represents a relative error of 9.3%



