

Data Compression

4th Stage

Department of Computer Engineering

University of Diyala

References:

1. Sayood, Khalid. Introduction to data compression. Newnes, 2012.

2. Salomon, David. Data compression: the complete reference. Springer
Science & Business Media, 2004.

Introduction

The last decade we have been witnessing a transformation—some call it a

revolution—in the way we communicate, and the process is still under way. This

transformation includes the ever-growing Internet; the explosive development of

mobile communications; and the ever-increasing importance of video

communication. Data compression is one of the enabling technologies for each

of these aspects of the multimedia revolution.

So, what is data compression, and why do we need it? Most of you have heard of

JPEG and MPEG, which are standards for representing images, video, and audio.

Data compression algorithms are used in these standards to reduce the number of

bits required to represent an image or a video sequence or music.

Data Compression

Data compression for (image, audio, video, text, or graphic) is the art or science

of representing information in a compact form to reducing the size of the data.

The primary goal of data compression is to reduce the file size. Compression is

used just about everywhere for several reasons:

1) To save space when storing it.

2) To save time when transmitting it.

The task of compression consists of two components, an encoding algorithm that

takes a message and generates a “compressed” representation and a decoding

algorithm that reconstructs the original message or some approximation of it from the

compressed representation.

Types of Data Compression

There are two major families of compression techniques in terms of the

possibility of reconstructing the original source. They are called Lossless and

lossy compression.

1. Lossless Compression

A compression approach is lossless only if it is possible to exactly reconstruct the

original data from the compressed version. There is no loss of any information

Compressed

File

Decoding

Decompressed

File

Postprocessing

during the compression1 process. Lossless compression techniques are mostly

applied to symbolic data such as character text, numeric data, computer source

code and executable graphics and icons. Lossless compression techniques are also

used when the original data of a source are so important that we cannot afford to

lose any details. For example, medical images, text and images preserved for legal

reasons; some computer executable files.

2. Lossy Compression

A compression method is lossy compression only if it is not possible to

reconstruct the original exactly from the compressed version. There are some

insignificant details that may get lost during the process of compression. Data

such as multimedia images, video and audio are more easily compressed by lossy

compression techniques.

Compression System Model

The compression system model consists of two parts: the compressor (Encoding)

and the decompressor (Decoding). The compressor consists of a preprocessing

stage and encoding stage, whereas the decompressor consists of a decoding stage

followed by a post-processing stage Figure (1.1). Before encoding, preprocessing

is performed to prepare the data for the encoding process and consists of a number

of operations that are application specific. After the compressed file has been

decoded, post processing can be performed to eliminate some of the potentially

undesirable artifacts brought about by the compression process. Often, many

practical compression algorithms are a combination of a number of different

individual compression techniques.

(a) Compression

(b) Decompression

Figure 1: Compression System Model

Input File Pre-processing

Compressed

File
Encoding

Fidelity Criteria

The key in data compression algorithm development is to determine the minimal

data required retaining the necessary information. This is achieved by taking

advantage of the redundancy that exists in data. To determine exactly what

information is important and to be able to measure data fidelity, we need to define

data fidelity criterion. Note that the information required is application specific,

and that, with lossless schemes, there is no need for a fidelity criterion. Fidelity

Criteria can be divided into two classes:

1. Objective fidelity criteria: this fidelity is borrowed from digital signal

processing and information theory and provides us with equations that

can be used to measure the amount of error in the reconstructed

(decompressed) data. Commonly used objective measures are the root-

mean-square error (RMSE), the root-mean-square signal-to-noise ratio

(SNRRMS), and the peak signal-to-noise ratio (SNRPEAK). We can

define the error between an original, uncompressed pixel value and the

reconstructed (decompressed) value. These objective measures are often

used in the research because they are easy to generate and seemingly

unbiased, these metrics are not necessarily correlated to our perception

of data.

2. Subjective fidelity criteria: these criteria require the definition of a

qualitative scale to assess data quality. This scale can then be used by

human test subjects to determine data fidelity. In order to provide

unbiased results, evaluation with subjective measures requires careful

selection of the test subjects and carefully designed evaluation

experiments. The subjective measures are better method for comparison

of compression algorithms, if the goal is to achieve high-quality data as

defined by visual perception.

Compression Performance

The performance of a compression algorithm can be measured by various criteria.

It depends on what is our priority concern. We could measure the relative

complexity of the algorithm, the memory required to implement the algorithm,

how fast the algorithm performs on a given machine, and how closely the

reconstruction resembles the original. A very logical way of measuring how well

a compression algorithm is to compresses a given set of data and look at the

difference in size of the data before the compression and size of the data after the

compression. There are several ways of measuring the compression effect:

 Compression Ratio: This is simply the ratio of size after compression to

size before compression. Values greater than 1 imply an output stream

bigger than the input stream (negative compression). The compression

ratio can also be called bpb (bit per bit)

 Compression Ratio = size after compression / size before compression

 Compression Factor: This is the reverse of compression ratio. In this case,

values greater than 1 indicate compression and values less than 1 imply

expansion. This measure seems natural to many people, since the bigger

the factor, the better the compression.

 Compression Factor = size before compression / size after compression

 Saving Percentage: This shows the shrinkage as a percentage

Example: Source image file (256 × 256) with 65,536 bytes is compressed into a

file with 16,384 bytes. The compression ratio is 1/4 and the compression factor

is 4. The saving percentage is: 75%.

Saving Percentage = size before comp. - size after comp. / size before

comp. %

