

Concepts in Data Compression

In this section the basic concepts of data compression are shown as below:

Entropy

Entropy is a concept in thermodynamics, statistical mechanics and information

theory. Both concepts of entropy have deep links with one another, although it

took many years for the development of the theories of statistical mechanics and

information theory to make this connection apparent. This section is about

information entropy, the information-theoretic formulation of entropy.

Information entropy is occasionally called Shannon's entropy in honor of Claude

E. Shannon, who formulated many of the key ideas of information theory. Claud

Shannon’s paper “A mathematical theory of communication” published in July

and October of 1948 is the Magna Carta of the information age. Shannon’s

discovery of the fundamental laws of data compression and transmission marks

the birth of Information Theory. The concept of entropy in information theory

describes how much information there is in a signal or event.

An intuitive understanding of information entropy relates to the amount of

uncertainty about an event associated with a given probability distribution. As an

example, consider a box containing many colored balls. If the balls are all of

different colors and no color predominates, then our uncertainty about the color

of a randomly drawn ball is maximal. On the other hand, if the box contains more

red balls than any other color, then there is slightly less uncertainty about the

result: the ball drawn from the box has more chances of being red (if we were

forced to place a bet, we would bet on a red ball). Telling someone the color of

every new drawn ball provides them with more information in the first case than

it does in the second case, because there is more uncertainty about what might

happen in the first case than there is in the second. Intuitively, if we know the

number of balls remaining, and they are all of one color, then there is no

uncertainty about what the next ball drawn will be, and therefore there is no

information content from drawing the ball. As a result, the entropy of the "signal"

(the sequence of balls drawn, as calculated from the probability distribution) is

higher in the first case than in the second.

For a set of possible messages, Shannon defined entropy as,

H (S)   p(s) log2
sS

1

p(s)

. (1) OR

H  

n 1



P log P

i  0
i 2 i

Where p(s) is the probability of message s. The definition of Entropy is very

similar to that in statistical physics- in physics S is the set of possible states a

system can be in and p(s) is the probability the system is in state (s). We might

remember that the second law of thermodynamics basically says that the entropy

of a system and its surroundings can only increase. Getting back to messages, if

we consider the individual messages s  S , Shannon defined the notion of the self-

information of a message as

i(s)  log2
1

p(s)

. (2)

This self-information represents the number of bits of information contained in it

and, roughly speaking, the number of bits we should use to send that message.

The equation says that messages with higher probability will contain less

information.

The entropy is simply a weighted average of the information of each message,

and therefore the average number of bits of information in the set of messages.

Larger entropies represent more information. Here are some examples of

entropies for different probability distributions over five messages:

p(S) {0.25, 0.25, 0.25, 0.125, 0.125}

H  3  0.25  log2 4  2  0.125  log2 8

 1.5  0.75

 2.25

p(s) {0.75, 0.625, 0.625, 0.625, 0.625}

H  0.75  log

 0.3  1

 1.3

4
 4  0.625  log 16

2
3

2

The Unary Code

The unary code of the non-negative integer n is defined as n-1 ones followed by

one zero or, alternatively, as n-1 zeros followed by a single one.

Table: Some Unary Codes

N Code Alt. Code
1 0 1
2 10 01
3 110 001
4 1110 0001
5 11110 00001

Ad Hoc Text Compression

Here are some simple, intuitive ideas for cases where the compression must be

reversible (lossless). If the text contains many spaces but they are not clustered,

they may be removed, and their positions indicated by a bit-string that contains a

0 for each text character that is not a space and a 1 for each space. Thus, the text

Here are some ideas,

Is encoded as the bit-string “0000100010000100000” followed by the text

Herearesomeideas.

Variable and Fixed Length Codes

Variable length codes are desirable for data compression because overall savings

may be achieved by assigning short codewords to frequently occurring symbols

and long codewords to rarely occurring ones. For example, consider a variable

length code (0, 100, 101, 110, 111) with lengths of codewords (1, 3, 3, 3, 3) for

alphabet (A, B, C, D, E), and a source string BAAAAAAAC with frequencies for

each symbol (7, 1, 1, 0, 0). The average number of bits required is

This is almost a saving of half the number of bits compared to 3 bits/symbol using

a 3-bit fixed length code. The shorter the codewords, the shorter the total length

of a source file. Hence the code would be a better one from the compression point

of view.

Uniquely Decodable Codes

The average length of the code is not the only important point in designing a

“good” code. Consider the following example. Suppose our source alphabet

consists of four letters a1, a2, a3, and a4, with probabilities P(a1) = 1/2, P(a2) =

1/4, and P(a3) = P(a4) = 1/8. The entropy for this source is 1.75 bits/symbol.

Consider the codes for this source in Table 2.2.

The average length l for each code is given by

*

l = # P(ai)n(ai)

i+1

Where n (ai) is the number of bits in the codeword for letter ai and the average

length is given in bits/symbol. Based on the average length, Code 1 appears to be

the best code. However, to be useful, a code should have the ability to transfer

information in an unambiguous manner. This is obviously not the case with Code

1. Both a1 and a2 have been assigned the codeword 0. When a 0 is received, there

is no way to know whether an a1 was transmitted or an a2. We would like each

symbol to be assigned a unique codeword. At first glance, Code 2 does not seem

to have the problem of ambiguity; each symbol is assigned a distinct codeword.

However, suppose we want to encode the sequence a2 a1 a1. Using Code 2, we

would encode this with the binary string 100. However, when the string 100 is

received at the decoder, there are several ways in which the decoder can decode

this string. The string 100 can be decoded as a2a1a1, or as a2a3. This means that

once a sequence is encoded with Code 2, the original sequence cannot be

recovered with certainty.

Prefix Codes and Binary Trees

A prefix is the first few consecutive bits of a codeword. When two codewords

are of different lengths, it is possible that the shorter codeword is identical to the

first few bits of the longer codeword. In this case, the shorter codeword is said to

be a prefix of the longer one. A prefix code is a uniquely decodable code: given

a complete and accurate sequence, a receiver can identify each word without

requiring a special marker between words. However, there are uniquely

decodable codes that are not prefix codes.

Example: Consider two binary codewords of different length: c1 = 010 (3 bits)

and c2 = 01011 (5 bits). The shorter codeword c1 is the prefix of the longer code

c2 as c2= 01011. Codeword c2 can be obtained by appending two more bits 11

to cl.

The prefix property of a binary code is the fact that no codeword is a prefix of

another. A prefix code is a code in which no codeword is a prefix of another

codeword. It is easy to check whether a binary code is a prefix code by drawing

an associated binary tree. Each binary code can correspond to one such binary

tree, in which each codeword corresponds to a path from the root to a node with

the codeword name marked at the end of the path. Each bit 0 in a codeword

corresponds to a left edge and each 1 to a right edge. Recall that, if a prefix code

is represented in such an associate binary tree, all the codeword labels will be at

its leaves. Two steps are involved in this approach:

1. Construct Binary Tree

First, we create a node as the root of the binary tree. Next, we look at the

codewords one by one. For each codeword, we read one bit at a time from the

first to the last. Starting from the root, we either draw a new branch or move down

an edge along a branch according to the value of the bit. When a bit 0 is read, we

draw, if there is no branch yet, a left branch and a new node at the end of the

branch. We move down one edge along the left branch otherwise and arrive at the

node at the end of the edge. Similarly, when a bit 1 is read, we draw if there no

branch yet, a right branch, or move down an edge along the right branch

otherwise. The process repeats from node to node while reading the bit by bit

until the end of the codeword. We mark the codeword after finishing with the

whole codeword.

Example: Draw the binary tree for Code 2, Code 3, and Code 4 in Table 2.2.

2. Checking Codeword Position

If all the codeword labels are only associated with the leaves, then the

codeword is a prefix code. Otherwise, it is not.

Example: Decide whether the codes (1,01,001,0000) and (0,10,110,1011) for

alphabet (A,B,C,D) are prefix codes. Figure below shows the solution.

Decoding Prefix Codeword

