
 

Concepts in Data Compression 

In this section the basic concepts of data compression are shown as below: 

 
Entropy 

 
Entropy is a concept in thermodynamics, statistical mechanics and information 

theory. Both concepts of entropy have deep links with one another, although it 

took many years for the development of the theories of statistical mechanics and 

information theory to make this connection apparent. This section is about 

information entropy, the information-theoretic formulation of entropy. 

Information entropy is occasionally called Shannon's entropy in honor of Claude 

E. Shannon, who formulated many of the key ideas of information theory. Claud 

Shannon’s paper “A mathematical theory of communication” published in July 

and October of 1948 is the Magna Carta of the information age. Shannon’s 

discovery of the fundamental laws of data compression and transmission marks 

the birth of Information Theory. The concept of entropy in information theory 

describes how much information there is in a signal or event. 

An intuitive understanding of information entropy relates to the amount of 

uncertainty about an event associated with a given probability distribution. As an 

example, consider a box containing many colored balls. If the balls are all of 

different colors and no color predominates, then our uncertainty about the color 

of a randomly drawn ball is maximal. On the other hand, if the box contains more 

red balls than any other color, then there is slightly less uncertainty about the 

result: the ball drawn from the box has more chances of being red (if we were 

forced to place a bet, we would bet on a red ball). Telling someone the color of 

every new drawn ball provides them with more information in the first case than 

it does in the second case, because there is more uncertainty about what might 

happen in the first case than there is in the second. Intuitively, if we know the 

number of balls remaining, and they are all of one color, then there is no 

uncertainty about what the next ball drawn will be, and therefore there is no 

information content from drawing the ball. As a result, the entropy of the "signal" 

(the sequence of balls drawn, as calculated from the probability distribution) is 

higher in the first case than in the second. 

 
For a set of possible messages, Shannon defined entropy as, 
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Where p(s) is the probability of message s. The definition of Entropy is very 

similar to that in statistical physics- in physics S is the set of possible states a 

system can be in and p(s) is the probability the system is in state (s). We might 

remember that the second law of thermodynamics basically says that the entropy 

of a system and its surroundings can only increase. Getting back to messages, if 

we consider the individual messages s  S , Shannon defined the notion of the self-

information of a message as 
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This self-information represents the number of bits of information contained in it 

and, roughly speaking, the number of bits we should use to send that message. 

The equation says that messages with higher probability will contain less 

information. 

The entropy is simply a weighted average of the information of each message, 

and therefore the average number of bits of information in the set of messages. 

Larger entropies represent more information. Here are some examples of 

entropies for different probability distributions over five messages: 
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The Unary Code 

 
The unary code of the non-negative integer n is defined as n-1 ones followed by 

one zero or, alternatively, as n-1 zeros followed by a single one. 

 
Table: Some Unary Codes 

 

N Code Alt. Code 
1 0 1 
2 10 01 
3 110 001 
4 1110 0001 
5 11110 00001 

 

Ad Hoc Text Compression 

Here are some simple, intuitive ideas for cases where the compression must be 

reversible (lossless). If the text contains many spaces but they are not clustered, 

they may be removed, and their positions indicated by a bit-string that contains a 

0 for each text character that is not a space and a 1 for each space. Thus, the text 

Here are some ideas, 

Is encoded as the bit-string “0000100010000100000” followed by the text 

Herearesomeideas. 

 
Variable and Fixed Length Codes 

 
Variable length codes are desirable for data compression because overall savings 

may be achieved by assigning short codewords to frequently occurring symbols 

and long codewords to rarely occurring ones. For example, consider a variable 

length code (0, 100, 101, 110, 111) with lengths of codewords (1, 3, 3, 3, 3) for 

alphabet (A, B, C, D, E), and a source string BAAAAAAAC with frequencies for 

each symbol (7, 1, 1, 0, 0). The average number of bits required is 
 

 

This is almost a saving of half the number of bits compared to 3 bits/symbol using 

a 3-bit fixed length code. The shorter the codewords, the shorter the total length 

of a source file. Hence the code would be a better one from the compression point 

of view. 



 

Uniquely Decodable Codes 
 

The average length of the code is not the only important point in designing a 

“good” code. Consider the following example. Suppose our source alphabet 

consists of four letters a1, a2, a3, and a4, with probabilities P(a1) = 1/2, P(a2) = 

1/4, and P(a3) = P(a4) = 1/8. The entropy for this source is 1.75 bits/symbol. 

Consider the codes for this source in Table 2.2. 
 

 

 

The average length l for each code is given by 
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Where n (ai) is the number of bits in the codeword for letter ai and the average 

length is given in bits/symbol. Based on the average length, Code 1 appears to be 

the best code. However, to be useful, a code should have the ability to transfer 

information in an unambiguous manner. This is obviously not the case with Code 

1. Both a1 and a2 have been assigned the codeword 0. When a 0 is received, there 

is no way to know whether an a1 was transmitted or an a2. We would like each 

symbol to be assigned a unique codeword. At first glance, Code 2 does not seem 

to have the problem of ambiguity; each symbol is assigned a distinct codeword. 

However, suppose we want to encode the sequence a2 a1 a1. Using Code 2, we 

would encode this with the binary string 100. However, when the string 100 is 

received at the decoder, there are several ways in which the decoder can decode 

this string. The string 100 can be decoded as a2a1a1, or as a2a3. This means that 

once a sequence is encoded with Code 2, the original sequence cannot be 

recovered with certainty. 



 

 

 
 

 

 



 

 

 
 

Prefix Codes and Binary Trees 

A prefix is the first few consecutive bits of a codeword. When two codewords 

are of different lengths, it is possible that the shorter codeword is identical to the 

first few bits of the longer codeword. In this case, the shorter codeword is said to 

be a prefix of the longer one. A prefix code is a uniquely decodable code: given 

a complete and accurate sequence, a receiver can identify each word without 

requiring a special marker between words. However, there are uniquely 

decodable codes that are not prefix codes. 

Example: Consider two binary codewords of different length: c1 = 010 (3 bits) 

and c2 = 01011 (5 bits). The shorter codeword c1 is the prefix of the longer code 

c2 as c2= 01011. Codeword c2 can be obtained by appending two more bits 11 

to cl. 

The prefix property of a binary code is the fact that no codeword is a prefix of 

another. A prefix code is a code in which no codeword is a prefix of another 

codeword. It is easy to check whether a binary code is a prefix code by drawing 

an associated binary tree. Each binary code can correspond to one such binary 

tree, in which each codeword corresponds to a path from the root to a node with 

the codeword name marked at the end of the path. Each bit 0 in a codeword 

corresponds to a left edge and each 1 to a right edge. Recall that, if a prefix code 

is represented in such an associate binary tree, all the codeword labels will be at 

its leaves. Two steps are involved in this approach: 



 

1. Construct Binary Tree 

 

First, we create a node as the root of the binary tree. Next, we look at the 

codewords one by one. For each codeword, we read one bit at a time from the 

first to the last. Starting from the root, we either draw a new branch or move down 

an edge along a branch according to the value of the bit. When a bit 0 is read, we 

draw, if there is no branch yet, a left branch and a new node at the end of the 

branch. We move down one edge along the left branch otherwise and arrive at the 

node at the end of the edge. Similarly, when a bit 1 is read, we draw if there no 

branch yet, a right branch, or move down an edge along the right branch 

otherwise. The process repeats from node to node while reading the bit by bit 

until the end of the codeword. We mark the codeword after finishing with the 

whole codeword. 

 
Example: Draw the binary tree for Code 2, Code 3, and Code 4 in Table 2.2. 

 

 

 

 

2. Checking Codeword Position 

 

If all the codeword   labels   are   only   associated   with   the   leaves,   then the 

codeword is a prefix code. Otherwise, it is not. 

Example: Decide whether the codes (1,01,001,0000) and (0,10,110,1011) for 

alphabet (A,B,C,D) are prefix codes. Figure below shows the solution. 



 

 

 

Decoding Prefix Codeword 
 

 

 

 

 


