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Lossless Compression Techniques 

 
1. Run Length Coding 

Is a simple and popular lossless data compression algorithm. The idea behind this 

approach to data compression is this: If a data item d occurs n consecutive times 

in the input stream, replace the n occurrences with the single pair nd. The n 

consecutive occurrences of a data item are called a run length of n, and this 

approach to data compression is called run-length encoding or RLE. We apply 

this idea first to text compression and then to image compression. 
 

A. RLE Text Compression 
 

Just replacing 2._all_is_too_well with 2._a2_is_t2_we2 will not work. Even the 

string 2._a2l_is_t2o_we2l does not solve this problem. One way to solve this 

problem is to precede each repetition with a special escape character. If we use 

the character @ as the escape character, then the string 2._a@2l_is_t@2o_we@2l can 

be decompressed unambiguously. However, this string is longer than the original 

string, because it replaces two consecutive letters with three characters. We have 

to adopt the convention that only four or more repetitions of the same character 

will be replaced with a repetition factor. The main problems with this method are 

the following: 
 

1. In English text there are not many repetitions. There are many “doubles”, 

but a “triple” is rare. 

2. The character “@” may be part of the text in the input stream, in which 

case a different escape character must be chosen. Sometimes the input 

stream may contain every possible character in the alphabet. Figure 2a is a 

flowchart for such a simple run-length text compressor. 
 

After reading the first character, the count is 1 and the character is saved. 

Subsequent characters are compared with the one already saved and, if they are 

identical to it, the repeat-count is incremented. When a different character is read, 

the operation depends on the value of the repeat count. If it is small, the saved 

character is written on the compressed file and the newly read character is saved. 

otherwise, an “@” is written, followed by the repeat-count and the saved 

character. Decompression is also straightforward. It is shown in Figure 1.3b. 

When an “@” is read, the repetition count n and the actual character are 

immediately read, and the character is written n times on the output stream. 
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b: Decompression 
 

 

 

 

 

 

 

 

a: Compression 

Figure 2: RLT text compression and decompression 

 
To get an idea of the compression ratios produced by RLE, we assume a string of 

N characters that needs to be compressed. We assume that the string contains M 

repetitions of average length L each. Each of the M repetitions is replaced by 3 

characters (escape, count, and data), so the size of the compressed string is: N − 

M(L − 3) and the compression factor is: N/(N − M(L − 3)). 

 

Examples: N = 1000, M = 10, L = 4 yield a compression factor of 1000/[1000 − 

10(4 − 3)] = 1.01. A better result is obtained in the case N = 1000, M = 50, L = 

10, where the factor is 1000/[1000 − 50(10 − 3)] = 1.538. 



Data Compression  

B. RLE Image Compression 
 

RLE can be used to compress grayscale images. Each run of pixels of the same 

intensity (gray level) is encoded as a pair (run length, pixel value). The run length 

usually occupies one byte, allowing for runs of up to 255 pixels. The pixel value 

occupies several bits, depending on the number of gray levels (typically between 

4 and 8 bits). 
 

RLE is a natural candidate for compressing graphical data. A digital image 

consists of small dots called pixels. Each pixel can be either one bit, indicating a 

black or a white dot, or several bits, indicating one of several colours or shades 

of gray. We assume that the pixels are stored in an array called a bitmap in 

memory, so the bitmap is the input stream for the image. Pixels are normally 

arranged in the bitmap in scan lines, so the first bitmap pixel is the dot at the top 

left corner of the image, and the last pixel is the one at the bottom right corner. 
 

Compressing an image using RLE is based on the observation that if we select a 

pixel in the image at random, there is a good chance that its neighbours will have 

the same colour. The compressor thus scans the bitmap row by row, looking for 

runs of pixels of the same colour. If the bitmap starts, e.g., with 17 white pixels, 

followed by 1 black one, followed by 55 white ones, etc., then only the numbers 

17, 1, 55, need be written on the output stream. The compressor assumes that the 

bitmap starts with white pixels. If this is not true, then the bitmap starts with zero 

white pixels, and the output stream should start with 0. The resolution of the 

bitmap should also be saved at the start of the output stream. 
 

The size of the compressed stream depends on the complexity of the image. The 

more detail, the worse the compression. However, Figure 3 shows how scan lines 

go through a uniform area. A line enters through one point on the perimeter of 

the area and exits through another point, and these two points are not “used” by 

any other scan lines. It is now clear that the number of scan lines traversing a 

uniform area is roughly equal to half the length (measured in pixels) of its 

perimeter. Since the area is uniform, each scan line contributes one number to the 

output stream. The compression ratio of a uniform region therefore roughly 

equals: 2×half the length of the perimeter /total number of pixels in the region = 

perimeter /area. 
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Figure 3: Uniform area and scan lines 
 

Example:    An    8-bit    deep    grayscale     bitmap     that     starts     with 12, 

12, 12, 12, 12, 12, 12, 12, 12, 35, 76, 112, 67, 87, 87, 87, 5, 5, 5, 5, 5, 5, 1, . . 

. is compressed into 9 ,12,35,76,112,67, 3 ,87, 6 ,5,1,. . . , where the bold numbers 

indicate counts. The problem is to distinguish between a byte containing a 

grayscale value (such as 12) and one containing a count (such as 9 ). Here are 

some solutions 
 

1. If the image is limited to just 128 grayscales, we can devote one bit in each 

byte to indicate whether the byte contains a grayscale value or a count. 

2. If the number of grayscales is 256, it can be reduced to 255 with one value 

reserved as a flag to precede every byte with a count. If the flag is, say, 255, 

then the sequence above becomes: 255, 9, 12, 35, 76, 112, 67, 255, 3, 87, 255, 

6, 5, 1,.... 

3. A group of m pixels that are all different is preceded by a byte with the 

negative value −m. The sequence above is encoded by: 9, 12, −4, 35, 76, 112, 

67, 3, 87, 6, 5, ?, 1,... (the value of the byte with ? is positive or negative 

depending on what follows the pixel of 1). 
 

Three more points should be mentioned: 
 

1. Since the run length cannot be 0, it makes sense to write the [run length minus 

one] on the output stream. Thus the pair (3, 87) denotes a run of four pixels 

with intensity 87. This way, a run can be up to 256 pixels long. 

2. In color images it is common to have each pixel stored as three bytes, In such 

a case, runs of each color should be encoded separately. The pixels (171, 85, 

34), (172, 85, 35), (172, 85, 30), and (173, 85, 33) should be separated into 

the three sequences (171, 172, 172, 173, . . .), (85, 85, 85, 85, ), and (34, 

35, 30, 33,    ). Each sequence should be run-length encoded separately. This 

means that any method for compressing grayscale images can be applied to 

color images as well. 

3. It is preferable to encode each row of the bitmap individually. Thus if a row 

ends with four pixels of intensity 87 and the following row starts with 9 such 

pixels, it is better to write ..., 4, 87, 9, 87,  on the output stream rather than 
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..., 13, 87,.... It is even better to write the sequence ..., 4, 87, eol, 9, 87,..., 

where “eol” is a special end-of-line code. 
 

Disadvantage of image RLE: When the image is modified, the run lengths 

normally have to be completely redone. The RLE output can sometimes be bigger 

than pixel by-pixel storage (i.e., an uncompressed image, a raw dump of the 

bitmap) for complex pictures. A good, practical RLE image compressor should 

be able to scan the bitmap by rows, columns, or in zigzag (Figure4 a, b) and it 

may automatically try all three ways on every bitmap compressed to achieve the 

best compression. 
 

 

Figure 4: RLE Scanning. 

H.W/ Given the 8×8 bitmap of Figure above, use RLE to compress it, first row 

by row, then column by column. Describe the results in detail. 

 

2. Golomb-Rice Coding 

Golomb coding is a lossless data compression method invented by Solomon W. 

Golomb. Symbols following a geometric distribution will have a Golomb code 

as an optimal prefix code, making Golomb coding highly suitable for situations 

in which the occurrence of small values in the input stream is significantly more 

likely than large values. The Golomb codes belong to a family of codes designed 

to encode integers with the assumption that the larger an integer, the lower its 

probability of occurrence. The simplest code for this situation is the unary code. 

The unary code for a positive integer N is simply N 1s followed by a 0. Thus, the 

code for 4 is 11110, and the code for 7 is 11111110. 

 

Golomb coding uses a tuneable parameter M to divide an input value N into two 

parts: q, the results of a division by M and r, the reminder. The quotient is sent in 

a unary coding, followed by the reminder in truncated binary encoding. When M 

= 1, Golomb coding is equivalent to unary coding. The Golomb-Rice code is a 
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special case of Golomb code. In this algorithm, if the M parameter is a power of 

2, it becomes equivalent to the simpler Rice encoding. The description of the 

Golomb-Rice code can be given as follows: 

 

 
Example: 

 

Set M = 10, Thus 𝑏 = ⌈𝑙𝑜𝑔(10⌉ = 4, the cut off is 2𝑏 − 𝑀 = 6 

 

 
For example, with a Rice-Golomb encoding of parameter M = 10, the decimal 

number 42 would first be split into q = 4,r = 2, and would be encoded as 

qcode(q),rcode(r) = qcode(4),rcode(2) = 11110,010 
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Note: In this example, c = b which is defined above. 
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This example demonstrates that the efficiency of the Golomb encoder is much 

higher than that of the binary encoder. 
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