
 

 

3. Tunstall Coding 

Most of the variable-length codes encode letters from the source alphabet using 

codewords with varying numbers of bits: codewords with fewer bits for letters 

that occur more frequently and codewords with more bits for letters that occur 

less frequently. The main advantage of variable-size codes is their variable size. 

Some codes are short, and it is this feature that produces compression. On the 

downside, variable-size codes are difficult to work with. 

 

The Tunstall code is an important exception. In the Tunstall code, all codewords 

are of equal length. However, each codeword represents a different number of 

letters. Thus, the idea is to construct a set of fixed-size codes, each encoding a 

variable-size string of input symbols. In order to understand what we mean by the 

first condition, consider the code shown in Table below. Let’s encode the same 

sequence AAABAABAABAABAAA. We first encode AAA with the code 00. 

We then encode B with 11. The next three symbols are AAB. However, there are 

no codewords corresponding to this sequence of symbols. Thus, this sequence is 

unencodable using this particular code—not a desirable situation. 
 
 

 
An algorithm was needed to develop the best n-bit Tunstall code for a given 

alphabet of N symbols. Given an alphabet of N symbols, we start with a code 

table that consists of the symbols. We then iterate as long as the size of the code 

table is less than or equal to the number of codes 2n. Each iteration performs the 

following steps: 
 

 
Example: Given an alphabet with the three symbols A, B, and C (N = 3), with 

probabilities 0.7, 0.2, and 0.1, respectively, we decide to construct a set of 3-bit 

Tunstall codes (thus, n = 3). We start our code table as a tree with a root and three 

children (Figure 5a). In the first iteration, we select A and turn it into the root of 
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a subtree with children AA, AB, and AC with probabilities 0.49, 0.14, and 0.07, 

respectively (Figure 5b). The largest probability in the tree is that of node AA, so 

the second iteration converts it to the root of a subtree with nodes AAA, AAB, 

and AAC with probabilities 0.343, 0.098, and 0.049, respectively (Figure 5c). 

After each iteration we count the number of leaves of the tree and compare it to 

23 = 8. After the second iteration there are seven leaves in the tree, so the loop 

stops. Seven 3-bit codes are arbitrarily assigned to elements AAA, AAB, AAC, 

AB, AC, B, and C. 
 

 

Figure 5: Tunstall Code 
 

The average bit length of this code is easily computed as 

 

 
In general, let 𝑝iand 𝑙i be the probability and length of tree node 𝑖. If there are 𝑚 

nodes in the tree, the average bit length of the Tunstall code is 𝑛⁄∑𝑚   𝑝i 𝑙i. The 

entropy of our alphabet is −(0.7 × log2 0.7 + 0.2 × log2 0.2 + 0.1 × log2 0.1) = 

1.156. So, the Tunstall codes do not provide the best compression due to the 

resulted efficiency: 
 

𝜂 = 
1.156 

= 84.4% 
1.37 

An important property of the Tunstall codes is their reliability. If one bit becomes 

corrupt, only one code will get bad. Normally, variable-size codes do not feature 

any reliability. One bad bit may corrupt the decoding of the remainder of a long 

sequence of such codes. It is possible to incorporate error-control codes in a string 

of variable-size codes, but this increases its size and reduces compression. All in 

all, the design of a code that has a fixed codeword length but a variable number 

of symbols per codeword should satisfy the following conditions: 
 

1. We should be able to parse a source output sequence into sequences of 

symbols that appear in the codebook. 

2. We should maximize the average number of source symbols represented 

by each codeword. 



 

4. Shannon-Fano Coding 

Shannon-Fano coding, named after Claude Shannon and Robert Fano, was the 

first algorithm to construct a set of the best variable-size codes. We start with a 

set of n symbols with known probabilities (or frequencies) of occurrence. The 

symbols are first arranged in descending order of their probabilities. The set of 

symbols is then divided into two subsets that have the same (or almost the same) 

probabilities. All symbols in one subset get assigned codes that start with a 0, 

while the codes of the symbols in the other subset start with a 1. Each subset is 

then recursively divided into two sub-subsets of roughly equal probabilities, and 

the second bit of all the codes is determined in a similar way. When a subset 

contains just two symbols, their codes are distinguished by adding one more bit 

to each. The process continues until no more subsets remain. Table 2.14 illustrates the 

Shannon-Fano algorithm for a seven-symbol alphabet. Notice that the symbols 

themselves are not shown, only their probabilities. 
 

The first step splits the set of seven symbols into two subsets, one with two 

symbols and a total probability of 0.45 and the other with the remaining five 

symbols and a total probability of 0.55. The two symbols in the first subset are 

assigned codes that start with 1, so their final codes are 11 and 10. The second 

subset is divided, in the second step, into two symbols (with total probability 0.3 

and codes that start with 01) and three symbols (with total probability 0.25 and 

codes that start with 00). Step three divides the last three symbols into 1 (with 

probability 0.1 and code 001) and 2 (with total probability 0.15 and codes that 

start with 000). 
 

 

The average size of this code is 0.25×2+0.20×2+0.15×3+0.15×3+0.10×3+ 0.10 × 

4 + 0.05 × 4 = 2.7 bits/symbol. This is a good result because the entropy (the 

smallest number of bits needed, on average, to represent each symbol) is − 0.25 

log2 0.25 + 0.20 log2 0.20 + 0.15 log2 0.15 + 0.15 log2 0.15 + 0.10 log2 0.10 + 

0.10 log2 0.10 + 0.05 log2 0.05 ≈ 2.67. 



 

If you repeat the calculations above placing the first split between the third and 

fourth symbols, the average size of the code will be greater than 2.7 bits/symbol. 

Therefore, the code in the resulted table will have a longer average size because 

the splits, in this case, are not as good as those of Table 2.14. This suggests that 

the Shannon-Fano method produces better code when the splits are better, i.e., 

when the two subsets in every split have very close total probabilities. Carrying 

this argument to its limit suggests that perfect splits yield the best code. 
 

Table 2.15 illustrates such a case. The two subsets in every split have identical 

total probabilities, yielding a code with the minimum average size (zero 

redundancy). Its average size is 0.25 × 2 + 0.25 × 2 + 0.125 × 3 + 0.125 × 3 + 

0.125 × 3 + 0.125 × 3 = 2.5 bits/symbols, which is identical to its entropy. This 

means that it is the theoretical minimum average size. 
 
 

 
The conclusion is that this method produces the best results when the symbols 

have probabilities of occurrence that are (negative) powers of 2. The Shannon- 

Fano method is easy to implement but the code it produces is generally not as 

good as that produced by the Huffman method. 
 

5. Huffman Coding 

This technique was developed by David Huffman as part of a class assignment; 

the class was the first ever in the area of information theory and was taught by 

Robert Fano at MIT. The codes generated using this technique or procedure are 

called Huffman codes. These codes are prefix codes and are optimum for a given 

model (set of probabilities). 
 

The Huffman procedure is based on two observations regarding optimum prefix 

codes. 



 

1. In an optimum code, symbols that occur more frequently (have a higher 

probability of occurrence) will have shorter codewords than symbols that 

occur less frequently. 

2. In an optimum code, the two symbols that occur least frequently will have 

the same length. 
 

It is easy to see that the first observation is correct. If symbols that occur more 

often had codewords that were longer than the codewords for symbols that 

occurred less often, the average number of bits per symbol would be larger than 

if the conditions were reversed. Therefore, a code that assigns longer codewords 

to symbols that occur more frequently cannot be optimum. 
 

The algorithm starts by building a list of all the alphabet symbols in descending 

order of their probabilities. It then constructs a tree, with a symbol at every leaf, 

from the bottom up. This is done in steps, where at each step the two symbols 

with smallest probabilities are selected, added to the top of the partial tree, deleted 

from the list, and replaced with an auxiliary symbol representing the two original 

symbols. When the list is reduced to just one auxiliary symbol (representing the 

entire alphabet), the tree is complete. The tree is then traversed to determine the 

codes of the symbols. The Huffman code for any symbol can be obtained by 

traversing the tree from the root node to the leaf corresponding to the symbol, 

adding a 0 to the codeword every time the traversal takes us over an upper branch 

and a 1 every time the traversal takes us over a lower branch. 
 

5.1 Huffman Code Design 
 



 

 
 

 

We build the binary tree starting at the leaf nodes. We know that the codewords 

for the two symbols with smallest probabilities are identical except for the last 

bit. This means that the traversal from the root to the leaves corresponding to 

these two symbols must be the same except for the last step. This in turn means 

that the leaves corresponding to the two symbols with the lowest probabilities are 

offspring of the same node. Once we have connected the leaves corresponding to 

the symbols with the lowest probabilities to a single node, we treat this node as a 

symbol of a reduced alphabet. The probability of this symbol is the sum of the 

probabilities of its offspring. We can now sort the nodes corresponding to the 

reduced alphabet and apply the same rule to generate a parent node for the nodes 

corresponding to the two symbols in the reduced alphabet with lowest 

probabilities. Continuing in this manner, we end up with a single node, which is 

the root node. To obtain the code for each symbol, we traverse the tree from the 

root to each leaf node, assigning a 0 to the upper branch and a 1 to the lower 

branch. 
 

The average length for this code is l = 0.4×1+0.2×2+0.2×3+0.1×4+0.1×4 = 2.2 

bits/symbol. A measure of the efficiency of this code is its redundancy—the 

difference between the entropy and the average length. In this case, the 

redundancy is 0.078 bits/symbol. The redundancy is zero when the probabilities 

are negative powers of two. 
 

H.W./ Compress ‘BILL BEATS BEN.’ (15 characters in total) using the Huffman 

approach. 


