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5.2 Minimum Variance Huffman Code 
 

By performing the sorting procedure in a slightly different manner, we could have 

found a different Huffman code. The generated codes are identical in terms of 

their redundancy. However, the variance of the length of the codewords is 

significantly different, but even more importantly, the Huffman code is not 

unique. For example, the average size of the generated code (0, 10, 111, 1101, 

and 1100) shown in Figure2.16a is 0.4×1+0.2×2+0.2×3+0.1×4+0.1×4 = 2.2 

bits/symbol. Some of the steps were chosen arbitrarily, since there were more 

than two symbols with smallest probabilities. Figure 2.16b shows how the same 

five symbols can be combined differently to obtain a different Huffman code (11, 

01, 00, 101, and 100). The average size of this code is 

0.4×2+0.2×2+0.2×2+0.1×3+0.1×3 = 2.2 bits/symbol, the same as the previous 

code. 
 

 

It turns out that the arbitrary decisions made in constructing the Huffman tree 

affect the individual codes but not the average size of the code. Still, we have to 

answer the obvious question, which of the different Huffman codes for a given 

set of symbols is best? The answer, while not obvious, is simple: The best code 

is the one with the smallest variance. The variance of a code measures how much 

the sizes of the individual codes deviate from the average size. The variance of 

code 2.16a is 
 

0.4(1 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(3 − 2.2)2 + 0.1(4 − 2.2)2 + 0.1(4 − 2.2)2 = 

1.36, 
 

while the variance of code 2.16b is 
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0.4(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.1(3 − 2.2)2 + 0.1(3 − 2.2)2 = 

0.16. 
 

Code 2.16b is therefore preferable. A careful look at the two trees shows how to 

select the one we want. In the tree of Figure 2.16a, symbol a45 is combined with 

a3, whereas in the tree of 2.16b it is combined with a1. The rule is: When there 

are more than two smallest-probability nodes, select the ones that are lowest and 

highest in the tree and combine them. This will combine symbols of low 

probability with ones of high probability, thereby reducing the total variance of 

the code. 
 

5.3 Ternary (Nonbinary) Huffman Codes 
 

The Huffman code is not unique. Moreover, it does not have to be binary! The 

Huffman method can easily be applied to codes based on other number systems. 

Figure 2.26a shows a Huffman code tree for five symbols with probabilities 0.15, 

0.15, 0.2, 0.25, and 0.25. The average code size is 
 

2×0.25 + 3×0.15 + 3×0.15 + 2×0.20 + 2×0.25 = 2.3 bits/symbol. 
 

Figure 2.26b shows a ternary Huffman code tree for the same five symbols. The 

tree is constructed by selecting, at each step, three symbols with the smallest 

probabilities and merging them into one parent symbol, with the combined 

probability. The average code size of this tree is 
 

2×0.15 + 2×0.15 + 2×0.20 + 1×0.25 + 1×0.25 = 1.5 trits/symbol. Notice that the 

ternary codes use the digits 0, 1, and 2. 
 

Furthermore, given seven symbols with probabilities .02, .03, .04, .04, .12, .26, 

and .49, the construction of binary and ternary Huffman code-trees are shown in 

Figure 2.26c and Figure 2.26d, respectively. 
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5.4 Adaptive Huffman Coding 
 

Huffman coding requires knowledge of the probabilities of the source sequence. 

If this knowledge is not available, Huffman coding becomes a two-pass 

procedure: the statistics are collected in the first pass, and the source is encoded 

in the second pass. In order to convert this algorithm into a one-pass procedure, 

Faller and Gallagher independently developed adaptive algorithms to construct 

the Huffman code based on the statistics of the symbols already encountered. 

These were later improved by Knuth and Vitter. Theoretically, if we wanted to 

encode the (k+1)-th symbol using the statistics of the first k symbols, we could 

recompute the code using the Huffman coding procedure each time a symbol is 

transmitted. However, this would not be a very practical approach due to the large 

amount of computation involved—hence, the adaptive Huffman coding 

procedures. 

 

The Huffman code can be described in terms of a binary tree similar to the ones 

explained previously. The codeword for a symbol can be obtained by traversing 

the tree from the root to the leaf corresponding to the symbol, where 0 
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corresponds to a left branch and 1 corresponds to a right branch. In order to 

describe how the adaptive Huffman code works, we add two other parameters to 

the binary tree: the weight of each leaf, which is written as a number inside the 

node, and a node number. The weight of each external node is simply the number 

of times the symbol corresponding to the leaf has been encountered. The weight 

of each internal node is the sum of the weights of its offspring. The node number 

yi is a unique number assigned to each internal and external node. If we have an 

alphabet of size n, then the 2n−1internal and external nodes can be numbered as 

y1,…, y2n−1 such that if xj is the weight of node yj, we have x1 ≤ x2 ≤ ··· ≤ 

x2n−1. Furthermore, the nodes y2j−1 and y2j are offspring of the same parent 

node, or siblings, for 1 ≤ j < n, and the node number for the parent node is greater 

than y2j−1 and y2j. These last two characteristics are called the sibling property, 

and any tree that possesses this property is a Huffman tree 
 

In the adaptive Huffman coding procedure, neither transmitter nor receiver knows 

anything about the statistics of the source sequence at the start of transmission. 

The tree at both the transmitter and the receiver consists of a single node that 

corresponds to all symbols not yet transmitted (NYT) and has a weight of zero. 

As transmission progresses, nodes corresponding to symbols transmitted will be 

added to the tree, and the tree is reconfigured using an update procedure. When a 

symbol is encountered for the first time, the code for the NYT node is transmitted, 

followed by the fixed code for the symbol. A node for the symbol is then created, 

and the symbol is taken out of the NYT list. Both transmitter and receiver start 

with the same tree structure. The updating procedure used by both transmitter and 

receiver is identical. Therefore, the encoding and decoding processes remain 

synchronized. 
 

5.4.1 Update Procedure 
 

The update procedure requires that the nodes be in a fixed order. This ordering is 

preserved by numbering the nodes. The largest node number is given to the root 

of the tree, and the smallest number is assigned to the NYT node. The numbers 

from the NYT node to the root of the tree are assigned in increasing order from 

left to right, and from lower level to upper level. The set of nodes with the same 

weight makes up a block. Figure 3.6 is a flowchart of the updating procedure. 
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The function of the update procedure is to preserve the sibling property. In order 

that the update procedures at the transmitter and receiver both operate with the 

same information, the tree at the transmitter is updated after each symbol is 

encoded, and the tree at the receiver is updated after each symbol is decoded. The 

procedure operates as follows: 
 

After a symbol has been encoded or decoded, the external node corresponding to 

the symbol is examined to see if it has the largest node number in its block. If the 

external node does not have the largest node number, it is exchanged with the 

node that has the largest node number in the block, as long as the node with the 

higher number is not the parent of the node being updated. The weight of the 
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external node is then incremented. If we did not exchange the nodes before the 

weight of the node is incremented, it is very likely that the ordering required by 

the sibling property would be destroyed. 
 

Once we have incremented the weight of the node, we have adapted the Huffman 

tree at that level. We then turn our attention to the next level by examining the 

parent node of the node whose weight was incremented to see if it has the largest 

number in its block. If it does not, it is exchanged with the node with the largest 

number in the block. Again, an exception to this is when the node with the higher 

node number is the parent of the node under consideration. Once an exchange has 

taken place (or it has been determined that there is no need for an exchange), the 

weight of the parent node is incremented. We then proceed to a new parent node 

and the process is repeated. This process continues until the root of the tree is 

reached. 
 

If the symbol to be encoded or decoded has occurred for the first time, a new 

external node is assigned to the symbol and a new NYT node is appended to the 

tree. Both the new external node and the new NYT node are offspring of the old 

NYT node. We increase the weight of the new external node by one. As the old 

NYT node is the parent of the new external node, we increase its weight by one 

and then go on to update all the other nodes until we reach the root of the tree. 
 

Example: Update procedure 
 

Assume we are encoding the message [a a r d v a r k], where our alphabet consists 

of the 26 lowercase letters of the English alphabet. The updating process is shown 

in Figure 3.7. We begin with only the NYT node. The total number of nodes in 

this tree will be 2 × 26 − 1 = 51, so we start numbering backwards from 51 with 

the number of the root node being 51. 
 

The first letter to be transmitted is a. As a does not yet exist in the tree, we send 

a binary code 00000 for a and then add a to the tree. The NYT node gives birth 

to a new NYT node and a terminal node corresponding to a. The weight of the 

terminal node will be higher than the NYT node, so we assign the number 49 to 

the NYT node and 50 to the terminal node corresponding to the letter a. The 

second letter to be transmitted is also a. This time the transmitted code is 1. The 

node corresponding to a has the highest number (if we do not consider its parent), 

so we do not need to swap nodes. The next letter to be transmitted is r. This letter 

does not have a corresponding node on the tree, so we send the codeword for the 

NYT node, which is 0 followed by the index of r, which is 10001. The NYT node 

gives birth to a new NYT node and an external node corresponding to r. Again, 

no update is required. The next letter to be transmitted is d, which is also being 

sent for the first time. We again send the code for the NYT node, which is now 

00 followed by the index for d, which is 00011. The NYT node again gives birth 
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to two new nodes. However, an update is still not required. This changes with the 

transmission of the next letter, v, which has also not yet been encountered. Nodes 

43 and 44 are added to the tree, with 44 as the terminal node corresponding to v. 

We examine the grandparent node of v (node 47) to see if it has the largest number in 

its block. As it does not, we swap it with node 48, which has the largest number in 

its block. We then increment node 48 and move to its parent, which is node 49. In 

the block containing node 49, the largest number belongs to node 50. Therefore, 

we swap nodes 49 and 50 and then increment node 50. We then move to the parent 

node of node 50, which is node 51. As this is the root node, all we do is increment 

node 51. 
 



Data Compression  

 

 



Data Compression  

 

 

Adaptive Huffman after (a a r d v a r k) is processed 
 

5.4.2 Encoding Procedure 
 

The flowchart for the encoding procedure is shown in Figure 3.8. Initially, the 

tree at both the encoder and decoder consists of a single node, the NYT node. 

Therefore, the codeword for the very first symbol that appears is a previously 

agreed-upon fixed code. After the very first symbol, whenever we have to encode 

a symbol that is being encountered for the first time, we send the code for the 

NYT node, followed by the previously agreed-upon fixed code for the symbol. 

The code for the NYT node is obtained by traversing the Huffman tree from the 

root to the NYT node. This alerts the receiver to the fact that the symbol whose 

code follows does not as yet have a node in the Huffman tree. If a symbol to be 

encoded has a corresponding node in the tree, then the code for the symbol is 

generated by traversing the tree from the root to the external node corresponding 

to the symbol. To see how the coding operation functions, we use the same 

example that was used to demonstrate the update procedure. 
 

Example: Encoding procedure 
 

In this example, we used an alphabet consisting of 26 letters. In order to obtain 

our prearranged code, we have to find m and e such that 2e +r =26, where 0≤r<2e. 

It is easy to see that the values of e = 4 and r = 10 satisfy this requirement. 
 

The first symbol encoded is the letter a. As a is the first letter of the alphabet, k = 

1. As 1 is less than 20, a is encoded as the 5-bit binary representation of k−1, or 

0, which is 00000. The Huffman tree is then updated as shown in the figure. The 

NYT node gives birth to an external node corresponding to the element a and a 

new NYT node. As a has occurred once, the external node corresponding to a has 
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a weight of one. The weight of the NYT node is zero. The internal node also has 

a weight of one, as its weight is the sum of the weights of its offspring. The next 

symbol is again a. As we have an external node corresponding to symbol a, we 

simply traverse the tree from the root node to the external node corresponding to 

a in order to find the codeword. This traversal consists of a single right branch. 

Therefore, the Huffman code for the symbol a is 1. 
 

After the code for a has been transmitted, the weight of the external node 

corresponding to a is incremented, as is the weight of its parent. The third symbol 

to be transmitted is r. As this is the first appearance of this symbol, we send the 

code for the NYT node followed by the previously arranged binary representation 

for r. If we traverse the tree from the root to the NYT node, we get a code of 0 for 

the NYT node. The letter r is the 18th letter of the alphabet; therefore, the binary 

representation of r is 10001. The code for the symbol r becomes 010001. The tree 

is again updated as shown in the figure, and the coding process continues with 

symbol d. Using the same procedure for d, the code for the NYT node, which is now 

00, is sent, followed by the index for d, resulting in the codeword 0000011. The next 

symbol v is the 22nd symbol in the alphabet. As this is greater than 20, we send 

the code for the NYT node followed by the 4-bit binary representation of 22 − 10 

− 1 = 11. The code for the NYT node at this stage is 000, and the 4-bit binary 

representation of 11 is 1011; therefore, v is encoded as 0001011. The next symbol 

is a, for which the code is 0, and the encoding proceeds. 
 

The binary string generated by the encoding procedure is: 

00000 1 010001 000011 0001011 0 (a a r d v a) 

00000 1 010001 000011 0001011 0 10 110001010 (a a r d v a r k ) 
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