
Data Compression

5.2 Minimum Variance Huffman Code

By performing the sorting procedure in a slightly different manner, we could have

found a different Huffman code. The generated codes are identical in terms of

their redundancy. However, the variance of the length of the codewords is

significantly different, but even more importantly, the Huffman code is not

unique. For example, the average size of the generated code (0, 10, 111, 1101,

and 1100) shown in Figure2.16a is 0.4×1+0.2×2+0.2×3+0.1×4+0.1×4 = 2.2

bits/symbol. Some of the steps were chosen arbitrarily, since there were more

than two symbols with smallest probabilities. Figure 2.16b shows how the same

five symbols can be combined differently to obtain a different Huffman code (11,

01, 00, 101, and 100). The average size of this code is

0.4×2+0.2×2+0.2×2+0.1×3+0.1×3 = 2.2 bits/symbol, the same as the previous

code.

It turns out that the arbitrary decisions made in constructing the Huffman tree

affect the individual codes but not the average size of the code. Still, we have to

answer the obvious question, which of the different Huffman codes for a given

set of symbols is best? The answer, while not obvious, is simple: The best code

is the one with the smallest variance. The variance of a code measures how much

the sizes of the individual codes deviate from the average size. The variance of

code 2.16a is

0.4(1 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(3 − 2.2)2 + 0.1(4 − 2.2)2 + 0.1(4 − 2.2)2 =

1.36,

while the variance of code 2.16b is

Data Compression

0.4(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.1(3 − 2.2)2 + 0.1(3 − 2.2)2 =

0.16.

Code 2.16b is therefore preferable. A careful look at the two trees shows how to

select the one we want. In the tree of Figure 2.16a, symbol a45 is combined with

a3, whereas in the tree of 2.16b it is combined with a1. The rule is: When there

are more than two smallest-probability nodes, select the ones that are lowest and

highest in the tree and combine them. This will combine symbols of low

probability with ones of high probability, thereby reducing the total variance of

the code.

5.3 Ternary (Nonbinary) Huffman Codes

The Huffman code is not unique. Moreover, it does not have to be binary! The

Huffman method can easily be applied to codes based on other number systems.

Figure 2.26a shows a Huffman code tree for five symbols with probabilities 0.15,

0.15, 0.2, 0.25, and 0.25. The average code size is

2×0.25 + 3×0.15 + 3×0.15 + 2×0.20 + 2×0.25 = 2.3 bits/symbol.

Figure 2.26b shows a ternary Huffman code tree for the same five symbols. The

tree is constructed by selecting, at each step, three symbols with the smallest

probabilities and merging them into one parent symbol, with the combined

probability. The average code size of this tree is

2×0.15 + 2×0.15 + 2×0.20 + 1×0.25 + 1×0.25 = 1.5 trits/symbol. Notice that the

ternary codes use the digits 0, 1, and 2.

Furthermore, given seven symbols with probabilities .02, .03, .04, .04, .12, .26,

and .49, the construction of binary and ternary Huffman code-trees are shown in

Figure 2.26c and Figure 2.26d, respectively.

Data Compression

5.4 Adaptive Huffman Coding

Huffman coding requires knowledge of the probabilities of the source sequence.

If this knowledge is not available, Huffman coding becomes a two-pass

procedure: the statistics are collected in the first pass, and the source is encoded

in the second pass. In order to convert this algorithm into a one-pass procedure,

Faller and Gallagher independently developed adaptive algorithms to construct

the Huffman code based on the statistics of the symbols already encountered.

These were later improved by Knuth and Vitter. Theoretically, if we wanted to

encode the (k+1)-th symbol using the statistics of the first k symbols, we could

recompute the code using the Huffman coding procedure each time a symbol is

transmitted. However, this would not be a very practical approach due to the large

amount of computation involved—hence, the adaptive Huffman coding

procedures.

The Huffman code can be described in terms of a binary tree similar to the ones

explained previously. The codeword for a symbol can be obtained by traversing

the tree from the root to the leaf corresponding to the symbol, where 0

Data Compression

corresponds to a left branch and 1 corresponds to a right branch. In order to

describe how the adaptive Huffman code works, we add two other parameters to

the binary tree: the weight of each leaf, which is written as a number inside the

node, and a node number. The weight of each external node is simply the number

of times the symbol corresponding to the leaf has been encountered. The weight

of each internal node is the sum of the weights of its offspring. The node number

yi is a unique number assigned to each internal and external node. If we have an

alphabet of size n, then the 2n−1internal and external nodes can be numbered as

y1,…, y2n−1 such that if xj is the weight of node yj, we have x1 ≤ x2 ≤ ··· ≤

x2n−1. Furthermore, the nodes y2j−1 and y2j are offspring of the same parent

node, or siblings, for 1 ≤ j < n, and the node number for the parent node is greater

than y2j−1 and y2j. These last two characteristics are called the sibling property,

and any tree that possesses this property is a Huffman tree

In the adaptive Huffman coding procedure, neither transmitter nor receiver knows

anything about the statistics of the source sequence at the start of transmission.

The tree at both the transmitter and the receiver consists of a single node that

corresponds to all symbols not yet transmitted (NYT) and has a weight of zero.

As transmission progresses, nodes corresponding to symbols transmitted will be

added to the tree, and the tree is reconfigured using an update procedure. When a

symbol is encountered for the first time, the code for the NYT node is transmitted,

followed by the fixed code for the symbol. A node for the symbol is then created,

and the symbol is taken out of the NYT list. Both transmitter and receiver start

with the same tree structure. The updating procedure used by both transmitter and

receiver is identical. Therefore, the encoding and decoding processes remain

synchronized.

5.4.1 Update Procedure

The update procedure requires that the nodes be in a fixed order. This ordering is

preserved by numbering the nodes. The largest node number is given to the root

of the tree, and the smallest number is assigned to the NYT node. The numbers

from the NYT node to the root of the tree are assigned in increasing order from

left to right, and from lower level to upper level. The set of nodes with the same

weight makes up a block. Figure 3.6 is a flowchart of the updating procedure.

Data Compression

The function of the update procedure is to preserve the sibling property. In order

that the update procedures at the transmitter and receiver both operate with the

same information, the tree at the transmitter is updated after each symbol is

encoded, and the tree at the receiver is updated after each symbol is decoded. The

procedure operates as follows:

After a symbol has been encoded or decoded, the external node corresponding to

the symbol is examined to see if it has the largest node number in its block. If the

external node does not have the largest node number, it is exchanged with the

node that has the largest node number in the block, as long as the node with the

higher number is not the parent of the node being updated. The weight of the

Data Compression

external node is then incremented. If we did not exchange the nodes before the

weight of the node is incremented, it is very likely that the ordering required by

the sibling property would be destroyed.

Once we have incremented the weight of the node, we have adapted the Huffman

tree at that level. We then turn our attention to the next level by examining the

parent node of the node whose weight was incremented to see if it has the largest

number in its block. If it does not, it is exchanged with the node with the largest

number in the block. Again, an exception to this is when the node with the higher

node number is the parent of the node under consideration. Once an exchange has

taken place (or it has been determined that there is no need for an exchange), the

weight of the parent node is incremented. We then proceed to a new parent node

and the process is repeated. This process continues until the root of the tree is

reached.

If the symbol to be encoded or decoded has occurred for the first time, a new

external node is assigned to the symbol and a new NYT node is appended to the

tree. Both the new external node and the new NYT node are offspring of the old

NYT node. We increase the weight of the new external node by one. As the old

NYT node is the parent of the new external node, we increase its weight by one

and then go on to update all the other nodes until we reach the root of the tree.

Example: Update procedure

Assume we are encoding the message [a a r d v a r k], where our alphabet consists

of the 26 lowercase letters of the English alphabet. The updating process is shown

in Figure 3.7. We begin with only the NYT node. The total number of nodes in

this tree will be 2 × 26 − 1 = 51, so we start numbering backwards from 51 with

the number of the root node being 51.

The first letter to be transmitted is a. As a does not yet exist in the tree, we send

a binary code 00000 for a and then add a to the tree. The NYT node gives birth

to a new NYT node and a terminal node corresponding to a. The weight of the

terminal node will be higher than the NYT node, so we assign the number 49 to

the NYT node and 50 to the terminal node corresponding to the letter a. The

second letter to be transmitted is also a. This time the transmitted code is 1. The

node corresponding to a has the highest number (if we do not consider its parent),

so we do not need to swap nodes. The next letter to be transmitted is r. This letter

does not have a corresponding node on the tree, so we send the codeword for the

NYT node, which is 0 followed by the index of r, which is 10001. The NYT node

gives birth to a new NYT node and an external node corresponding to r. Again,

no update is required. The next letter to be transmitted is d, which is also being

sent for the first time. We again send the code for the NYT node, which is now

00 followed by the index for d, which is 00011. The NYT node again gives birth

Data Compression

to two new nodes. However, an update is still not required. This changes with the

transmission of the next letter, v, which has also not yet been encountered. Nodes

43 and 44 are added to the tree, with 44 as the terminal node corresponding to v.

We examine the grandparent node of v (node 47) to see if it has the largest number in

its block. As it does not, we swap it with node 48, which has the largest number in

its block. We then increment node 48 and move to its parent, which is node 49. In

the block containing node 49, the largest number belongs to node 50. Therefore,

we swap nodes 49 and 50 and then increment node 50. We then move to the parent

node of node 50, which is node 51. As this is the root node, all we do is increment

node 51.

Data Compression

Data Compression

Adaptive Huffman after (a a r d v a r k) is processed

5.4.2 Encoding Procedure

The flowchart for the encoding procedure is shown in Figure 3.8. Initially, the

tree at both the encoder and decoder consists of a single node, the NYT node.

Therefore, the codeword for the very first symbol that appears is a previously

agreed-upon fixed code. After the very first symbol, whenever we have to encode

a symbol that is being encountered for the first time, we send the code for the

NYT node, followed by the previously agreed-upon fixed code for the symbol.

The code for the NYT node is obtained by traversing the Huffman tree from the

root to the NYT node. This alerts the receiver to the fact that the symbol whose

code follows does not as yet have a node in the Huffman tree. If a symbol to be

encoded has a corresponding node in the tree, then the code for the symbol is

generated by traversing the tree from the root to the external node corresponding

to the symbol. To see how the coding operation functions, we use the same

example that was used to demonstrate the update procedure.

Example: Encoding procedure

In this example, we used an alphabet consisting of 26 letters. In order to obtain

our prearranged code, we have to find m and e such that 2e +r =26, where 0≤r<2e.

It is easy to see that the values of e = 4 and r = 10 satisfy this requirement.

The first symbol encoded is the letter a. As a is the first letter of the alphabet, k =

1. As 1 is less than 20, a is encoded as the 5-bit binary representation of k−1, or

0, which is 00000. The Huffman tree is then updated as shown in the figure. The

NYT node gives birth to an external node corresponding to the element a and a

new NYT node. As a has occurred once, the external node corresponding to a has

Data Compression

a weight of one. The weight of the NYT node is zero. The internal node also has

a weight of one, as its weight is the sum of the weights of its offspring. The next

symbol is again a. As we have an external node corresponding to symbol a, we

simply traverse the tree from the root node to the external node corresponding to

a in order to find the codeword. This traversal consists of a single right branch.

Therefore, the Huffman code for the symbol a is 1.

After the code for a has been transmitted, the weight of the external node

corresponding to a is incremented, as is the weight of its parent. The third symbol

to be transmitted is r. As this is the first appearance of this symbol, we send the

code for the NYT node followed by the previously arranged binary representation

for r. If we traverse the tree from the root to the NYT node, we get a code of 0 for

the NYT node. The letter r is the 18th letter of the alphabet; therefore, the binary

representation of r is 10001. The code for the symbol r becomes 010001. The tree

is again updated as shown in the figure, and the coding process continues with

symbol d. Using the same procedure for d, the code for the NYT node, which is now

00, is sent, followed by the index for d, resulting in the codeword 0000011. The next

symbol v is the 22nd symbol in the alphabet. As this is greater than 20, we send

the code for the NYT node followed by the 4-bit binary representation of 22 − 10

− 1 = 11. The code for the NYT node at this stage is 000, and the 4-bit binary

representation of 11 is 1011; therefore, v is encoded as 0001011. The next symbol

is a, for which the code is 0, and the encoding proceeds.

The binary string generated by the encoding procedure is:

00000 1 010001 000011 0001011 0 (a a r d v a)

00000 1 010001 000011 0001011 0 10 110001010 (a a r d v a r k)

Data Compression

