
  

6. Arithmetic Coding 

The Huffman method is efficient and produces the best codes for the individual 

data symbols. However, it has been shown that the only case where it produces 

ideal variable-size codes (codes whose average size equals the entropy) is when 

the symbols have probabilities of occurrence that are negative powers of 2 (i.e., 

numbers such as 1/2, 1/4, or 1/8). This is because the Huffman method assigns a 

code with an integral number of bits to each symbol in the alphabet. Information 

theory shows that a symbol with probability 0.4 should ideally be assigned a 1.32- bit 

code, since − log2 0.4 ≈ 1.32. The Huffman method, however, normally assigns 

such a symbol a code of 1 or 2 bits. 
 

Arithmetic coding overcomes the problem of assigning integer codes to the 

individual symbols by assigning one (normally long) code to the entire input file. 

The method starts with a certain interval, it reads the input file symbol by symbol, 

and it uses the probability of each symbol to narrow the interval. Specifying a 

narrower interval requires more bits, so the number constructed by the algorithm 

grows continuously. To achieve compression, the algorithm is designed such that 

a high-probability symbol narrows the interval less than a low-probability 

symbol, with the result that high-probability symbols contribute fewer bits to the 

output. 
 

An interval can be specified by its lower and upper limits or by one limit and 

width. We use the latter method to illustrate how an interval’s specification 

becomes longer as the interval narrows. The interval [0, 1] can be specified by 

the two 1-bit numbers 0 and 1. The interval [0.1,0.512] can be specified by the 

longer numbers 0.1 and 0.412. The very narrow interval [0.12575,0.1257586] is 

specified by the long numbers 0.12575 and 0.0000086. The output of arithmetic 

coding is interpreted as a number in the range [0, 1). [The notation [a, b) means 

the range of real numbers from a to b, including a but not including b. The range 

is “closed” at a and “open” at b.]. Thus, the code 9746509 is be interpreted as 

0.9746509, although the 0. part is not included in the output file. 
 

Before we plunge into the details, here is a bit of history. The principle of 

arithmetic coding was first proposed by Peter Elias in the early 1960s and was 

first described in [Abramson 63]. Early practical implementations of this method 

were developed by [Rissanen 76], [Pasco 76], and [Rubin 79]. [Moffat et al. 98] 

and [Witten et al. 87] should especially be mentioned. They discuss both the 

principles and details of practical arithmetic coding and show examples. 
 

The first step is to calculate, or at least to estimate, the frequencies of occurrence 

of each symbol. For best results, the exact frequencies are calculated by reading 

the entire input file in the first pass of a two-pass compression job. However, if 



  

the program can get good estimates of the frequencies from a different source, 

the first pass may be omitted. The main steps of arithmetic coding can be 

summarized as follows: 
 

1. Start by defining the “current interval” as [0, 1). 

2. Repeat the following two steps for each symbol S in the input stream: 

 
2.1 Divide the current interval into subintervals whose sizes are proportional 

to the symbols’ probabilities. 

2.2 Select the subinterval for S and define it as the new current interval. 

 
3. When the entire input stream has been processed in this way, the output 

should be any number that uniquely identifies the current interval (i.e., any 

number inside the current interval). 

 

For each symbol processed, the current interval gets smaller, so it takes more bits 

to express it, but the point is that the final output is a single number and does not 

consist of codes for the individual symbols. The average code size can be obtained 

by dividing the size of the output (in bits) by the size of the input (in symbols). 

Notice also that the probabilities used in step 2.1 may change all the time, since 

they may be supplied by an adaptive probability model. 
 

This example shows the compression steps for the short string SWISS_MISS. 

Table 2.47 shows the information prepared in the first step (the statistical model 

of the data). The five symbols appearing in the input may be arranged in any 

order. For each symbol, its frequency is first counted, followed by its probability 

of occurrence (the frequency divided by the string size, 10). The range [0, 1) is 

then divided among the symbols, in any order, with each symbol getting a chunk, 

or a subrange, equal in size to its probability. Thus, S gets the subrange [0.5,1.0) 

(of size 0.5), whereas the subrange of I is of size 0.2 [0.2, 0.4). 
 

The symbols and frequencies in Table 2.47 are written on the output stream 

before any of the bits of the compressed code. This table will be the first thing 



  

input by the decoder. The encoding process starts by defining two variables, Low 

and High, and setting them to 0 and 1, respectively. They define an interval [Low, 

High). As symbols are being input and processed, the values of Low and High 

are moved closer together, to narrow the interval. 
 

After processing the first symbol S, Low and High are updated to 0.5 and 1, 

respectively. The resulting code for the entire input stream will be a number in 

this range (0.5 ≤ Code < 1.0). The rest of the input stream will determine precisely 

where, in the interval [0.5, 1), the final code will lie. A good way to understand 

the process is to imagine that the new interval [0.5,1) is divided among the five 

symbols of our alphabet using the same proportions as for the original interval 

[0,1). The result is the five subintervals [0.5,0.55), [0.55,0.60), [0.60,0.70), 

[0.70,0.75), and [0.75,1.0). When the next symbol W is input, the third of those 

subintervals is selected and is again divided into five subsubintervals. 
 

As more symbols are being input and processed, Low and High are being updated 

according to 
 

NewLow:=OldLow+Range*LowRange(X); 

NewHigh:=OldLow+Range*HighRange(X); 
 

where Range=OldHigh−OldLow and LowRange(X), HighRange(X) indicate the 

low and high limits of the range of symbol X, respectively. In the example above, 

the second input symbol is W, so we update Low := 0.5+(1.0−0.5)×0.4 = 0.70, 

High := 0.5+ (1.0−0.5)×0.5 = 0.75. The new interval [0.70,0.75) covers the stretch 

[40%,50%) of the subrange of S. Table 2.48 shows all the steps involved in 

coding the string SWISS_MISS. The final code is the final value of Low, 

0.71753375, of which only the eight digits 71753375 need be written on the 

output stream. 
 

The decoder works in reverse. It starts by inputting the symbols and their ranges, 

and reconstructing Table 2.47. It then inputs the rest of the code. The first digit is 

7, so the decoder immediately knows that the entire code is a number of the form 

0.7        This number is inside the subrange [0.5,1) of S, so the first symbol is S. 

The decoder then eliminates the effect of symbol S from the code by subtracting 

the lower limit 0.5 of S and dividing by the width of the subrange of S (0.5). The 

result is 0.4350675, which tells the decoder that the next symbol is W (since the 

subrange of W is [0.4, 0.5)). 
 

To eliminate the effect of symbol X from the code, the decoder performs the 

operation Code:=(Code-LowRange(X))/Range, where Range is the width of the 

subrange of X. Table 2.50 summarizes the steps for decoding our example string 

(notice that it has two rows per symbol). 



  

 
 

 

 
 



  

 



  

7. Dictionary Coding 

All the aforementioned statistical compression methods use a statistical model of 

the data, which is why the quality of compression they achieve depends on how 

good that model is. Dictionary- based compression methods do not use a 

statistical model, nor do they use variable-size codes. Instead they select strings 

of symbols and encode each string as a token using a dictionary. The dictionary 

holds strings of symbols, and it may be static or dynamic (adaptive). The former 

is permanent, sometimes allowing the addition of strings but no deletions, 

whereas the latter holds strings previously found in the input stream, allowing for 

additions and deletions of strings as new input is being read. 
 

Given a string of n symbols, a dictionary-based compressor can, in principle, 

compress it down to nH bits where H is the entropy of the string. Thus, dictionary- 

based compressors are entropy encoders, but only if the input file is very large. 

For most files in practical applications, dictionary-based compressors produce 

results that are good enough to make this type of encoder very popular. Such 

encoders are also general purpose, performing on images and audio data as well 

as they perform on text. 
 

The simplest example of a static dictionary is a dictionary of the English language 

used to compress English text. Imagine a dictionary containing perhaps half a 

million words (without their definitions). A word (a string of symbols terminated 

by a space or a punctuation mark) is read from the input stream and the dictionary 

is searched. If a match is found, an index to the dictionary is written into the 

output stream. Otherwise, the uncompressed word itself is written. 
 

Adaptive dictionary-based method is preferable. Such a method can start with an 

empty dictionary or with a small, default dictionary, add words to it as they are 

found in the input stream, and delete old words because a big dictionary slows 

down the search. Such a method consists of a loop where each iteration starts by 

reading the input stream and breaking it up (parsing it) into words or phrases. It 

then should search the dictionary for each word and, if a match is found, write a 

token on the output stream. Otherwise, the uncompressed word should be written 

and also added to the dictionary. The last step in each iteration checks whether an 

old word should be deleted from the dictionary. 
 

Having one’s name attached to a scientific discovery, technique, or phenomenon 

is considered a special honour in science. Having one’s name associated with an 

entire field of science is even more so. This is what happened to Jacob Ziv and 

Abraham Lempel. In the 1970s these two researchers developed the first methods, 

LZ77 and LZ78, for dictionary-based compression. Their ideas have been a 

source of inspiration to many researchers,  who generalized, improved,  and 



  

combined them with RLE and statistical methods to form many commonly used 

lossless compression methods for text, images, and audio. 
 

In general, compression methods based on strings of symbols can be more 

efficient than methods that compress individual symbols. In principle, better 

compression is possible if the symbols of the alphabet have very different 

probabilities of occurrence. We use a simple example to show that the 

probabilities of strings of symbols vary more than the probabilities of the 

individual symbols constituting the strings. 
 

We start with a 2-symbol alphabet a1 and a2, with probabilities P1 = 0.8 and P2 

= 0.2, respectively. The average probability is 0.5, and we can get an idea of the 

variance (how much the individual probabilities deviate from the average) by 

calculating the sum of absolute differences |0.8 − 0.5| + |0.2 − 0.5| = 0.6. Any 

variable-size code would assign 1-bit codes to the two symbols, so the average 

size of the code is one bit per symbol. 
 

We now generate all the strings of two symbols. There are four of them, shown 

in Table 3.1a, together with their probabilities and a set of Huffman codes. The 

average probability is 0.25, so a sum of absolute differences similar to the one 

above yields 
 

|0.64 − 0.25| + |0.16 − 0.25| + |0.16 − 0.25| + |0.04 − 0.25| = 0.78. 
 

The average size of the Huffman code is 1×0.64+2×0.16+3×0.16+3×0.04 = 1.56 

bits per string, which is 0.78 bits per symbol. 
 

In the next step we similarly create all eight strings of three symbols. They are 

shown in Table 3.1b, together with their probabilities and a set of Huffman codes. 

The average probability is 0.125, so a sum of absolute differences similar to the 

ones above yields 
 

|0.512 − 0.125| + 3|0.128 − 0.125| + 3|0.032 − 0.125| + |0.008 − 0.125| = 0.792. 
 

The average size of the Huffman code in this case is 1×0.512+3×3×0.128+3×5× 
0.032 + 5 × 0.008 = 2.184 bits per string, which equals 0.728 bits per symbol. As 

we keep generating longer and longer strings, the probabilities of the strings differ 

more and more from their average, and the average code size gets better (Table 

3.1c). This is why a compression method that compresses strings, rather than 

individual symbols, can, in principle, yield better results. 



  

 

 

7.1 Static Dictionary 
 

Choosing a static dictionary technique is most appropriate when considerable 

prior knowledge about the source is available. This technique is especially 

suitable for use in specific applications. For example, if the task were to compress 

the student records at a university, a static dictionary approach may be the best. 

This is because we know ahead of time that certain words such as “Name” and 

“Student ID” are going to appear in almost all of the records. 
 

One of the more common forms of static dictionary coding is digram coding. In 

this form of coding, the dictionary consists of all letters of the source alphabet 

followed by as many pairs of letters, called digrams, as can be accommodated by 

the dictionary. For example, suppose we were to construct a dictionary of size 

256 for digram coding of all printable ASCII characters. The first 95 entries of 

the dictionary would be the 95 printable ASCII characters. The remaining 161 

entries would be the most frequently used pairs of characters. 
 

The digram encoder reads a two-character input and searches the dictionary to 

see if this input exists in the dictionary. If it does, the corresponding index is 

encoded and transmitted. If it does not, the first character of the pair is encoded. 

The second character in the pair then becomes the first character of the next 

digram. The encoder reads another character to complete the digram, and the 

search procedure is repeated. 



  

Example: Suppose we have a source with a five-letter alphabet A = {a, b, c, d, 

r}. Based on knowledge about the source, we build the dictionary shown in Table 

5.1. Suppose we wish to encode the sequence: abracadabra 
 

 
The encoder reads the first two characters ab and checks to see if this pair of 

letters exists in the dictionary. It does and is encoded using the codeword 101. 

The encoder then reads the next two characters ra and checks to see if this pair 

occurs in the dictionary. It does not, so the encoder sends out the code for r, which 

is 100, then reads in one more character, c, to make the two-character pattern ac. 

This does exist in the dictionary and is encoded as 110. Continuing in this fashion, 

the remainder of the sequence is coded. The output string for the given input 

sequence is 101100110111101100000. 
 

A list of the 30 most frequently occurring pairs of characters in an earlier version 

of this chapter is shown in Table 5.2. For comparison, the 30 most frequently 

occurring pairs of characters in a set of C programs is shown in Table 5.3. In these 

tables, b/ corresponds to a space and nl corresponds to a new line. Notice how 

different the two tables are. It is easy to see that a dictionary designed for 

compressing LATEX documents would not work very well when compressing C 

programs. However, generally we want techniques that will be able to compress 

a variety of source outputs. If we wanted to compress computer files, we do not 

want to change techniques based on the content of the file. Rather, we would like 

the technique to adapt to the characteristics of the source output. We discuss 

adaptive-dictionary-based techniques in the next section. 



  

 
 

 

 

 


