
   

7.2 Adaptive Dictionary 

Most adaptive-dictionary-based techniques have their roots in two landmark 

papers by Jacob Ziv and Abraham Lempel in 1977 and 1978. These papers 

provide two different approaches to adaptively building dictionaries, and each 

approach has given rise to a number of variations. The approaches based on the 

1977 paper are said to belong to the LZ77 family (also known as LZ1), while the 

approaches based on the 1978 paper are said to belong to the LZ78, or LZ2, 

family. 
 

7.2.1 LZ77 

In the LZ77 approach, the dictionary is simply a portion of the previously encoded 

sequence. The encoder examines the input sequence through a sliding window as 

shown in Figure 5.1. The window consists of two parts, a search buffer that contains 

a portion of the recently encoded sequence, and a look-ahead buffer that contains 

the next portion of the sequence to be encoded. In Figure 5.1, the search buffer 

contains eight symbols, while the look-ahead buffer contains seven symbols. In 

practice, the sizes of the buffers are significantly larger; however, for the purpose 

of explanation, we will keep the buffer sizes small. 
 

To encode the sequence in the look-ahead buffer, the encoder moves a search 

pointer back through the search buffer until it encounters a match to the first 

symbol in the look-ahead buffer. The distance of the pointer from the look-ahead 

buffer is called the offset. The encoder then examines the symbols following the 

symbol at the pointer location to see if they match consecutive symbols in the 

look-ahead buffer. The number of consecutive symbols in the search buffer that 

match consecutive symbols in the look-ahead buffer, starting with the first 

symbol, is called the length of the match. The encoder searches the search buffer 

for the longest match. Once the longest match has been found, the encoder 

encodes it with a triple <o, l, c>, where o is the offset, l is the length of the match, 

and c is the codeword corresponding to the symbol in the look-ahead buffer that 

follows the match. For example, in Figure 5.1 the pointer is pointing to the 

beginning of the longest match. The offset o in this case is 7, the length of the 

match l is 4, and the symbol in the look-ahead buffer following the match is r. 



   

The reason for sending the third element in the triple is to take care of the situation 

where no match for the symbol in the look-ahead buffer can be found in the search 

buffer. In this case, the offset and match-length values are set to 0, and the third 

element of the triple is the code for the symbol itself. 
 

If the size of the search buffer is S, the size of the window (search and look-ahead 

buffers) is W , and the size of the source alphabet is A, then the number of bits 

needed to code the triple using fixed-length codes is [log2 S]+[log2 W]+[log2 A]. 

Notice that the second term is [log2 W], not [log2 S]. The reason for this is that 

the length of the match can actually exceed the length of the search buffer. We 

will see how this happens in Example 5.4.1. In the following example, we will 

look at three different possibilities that may be encountered during the coding 

process: 
 

1. There is no match for the next character to be encoded in the window. 

2. There is a match. 
3. The matched string extends inside the look-ahead buffer. 

Explanation Example: 

 

 
Example: Suppose the sequence to be encoded is … cabracadabrarrarrad… 

 

Suppose the length of the window is 13, the size of the look-ahead buffer is six, 

and the current condition is as follows: 
 

 

with dabrar in the look-ahead buffer. We look back in the already encoded 

portion of the window to find a match for d. As we can see, there is no match, so 

we transmit the triple <0,0,C(d)>. The first two elements of the triple show that 

there is no match to d in the search buffer, while C(d) is the code for the character 

d. For now, let’s continue with the encoding process. As we have encoded a single 

character, we move the window by one character. Now the contents of the buffer 

are 
 



   

with abrarr in the look-ahead buffer. Looking back from the current location, we 

find a match to a at an offset of two. The length of this match is one. Looking 

further back, we have another match for a at an offset of four; again the length of 

the match is one. Looking back even further in the window, we have a third match 

for a at an offset of seven. However, this time the length of the match is four (see 

Figure 5.2). So we encode the string abra with the triple <7, 4, C(r)>, and move 

the window forward by five characters. The window now contains the following 

characters: 
 

 

Now the look-ahead buffer contains the string rarrad. Looking back in the 

window, we find a match for r at an offset of one and a match length of one, and 

a second match at an offset of three with a match length of what at first appears 

to be three. It turns out we can use a match length of five instead of three. 
 

 

Why this is so will become clearer when we decode the sequence. To see how the 

decoding works, let us assume that we have decoded the sequence cabraca and 

we receive the triples <0, 0, C(d)>, <7, 4, C(r)>, and <3, 5, C(d)>. The first triple 

is easy to decode; there was no match within the previously decoded string, and 

the next symbol is d. The decoded string is now cabracad. The first element of 

the next triple tells the decoder to move the copy pointer back seven characters 

and copy four characters from that point. The decoding process works as shown 

in Figure 5.3. 
 

Finally, let’s see how the triple <3, 5, C(d)> gets decoded. We move back three 

characters and start copying. The first three characters we copy are rar. The copy 

pointer moves once again, as shown in Figure 5.4, to copy the recently copied 

character r. Similarly, we copy the next character a. Even though we started 

copying only three characters back, we end up decoding five characters. Notice 

that the match only has to start in the search buffer; it can extend into the look- 

ahead buffer. In fact, if the last character in the look-ahead buffer had been r 

instead of d, followed by several more repetitions of rar, the entire sequence of 

repeated rar’s could have been encoded with a single triple. 



   

As we can see, the LZ77 scheme is a very simple adaptive scheme that requires 

no prior knowledge of the source and seems to require no assumptions about the 

characteristics of the source. At first it seems that this method does not make any 

assumptions about the input data. Specifically, it does not pay attention to any 

symbol frequencies. A little thinking, however, shows that because of the nature 

of the sliding window, the LZ77 method always compares the look-ahead buffer 

to the recently-input text in the search buffer and never to text that was input long 

ago (and has therefore been flushed out of the search buffer). Thus, the method 

implicitly assumes that patterns in the input data occur close together. Data that 

satisfies this assumption will compress well. 
 

 

The basic LZ77 method was improved in several ways by researchers and 

programmers during the 1980s and 1990s. One way to improve it is to use 

variable-size “offset” and “length” fields in the tokens. Another way is to increase 



   

the sizes of both buffers. Increasing the size of the search buffer makes it possible 

to find better matches, but the trade-off is an increased search time. A large search 

buffer therefore requires a more sophisticated data structure that allows for fast 

search. A third improvement has to do with sliding the window. The simplest 

approach is to move all the text in the window to the left after each match. A 

faster method is to replace the linear window with a circular queue, where sliding 

the window is done by resetting two pointers. 
 

7.2.2 LZ78 

The LZ77 approach implicitly assumes that like patterns will occur close 

together. It makes use of this structure by using the recent past of the sequence as 

the dictionary for encoding. However, this means that any pattern that recurs over 

a period longer than that covered by the coder window will not be captured. The 

worst-case situation would be where the sequence to be encoded was periodic 

with a period longer than the search buffer. Consider Figure 5.5. 
 

 

This is a periodic sequence with a period of nine. If the search buffer had been 

just one symbol longer, this sequence could have been significantly compressed. 

As it stands, none of the new symbols will have a match in the search buffer and 

will have to be represented by separate codewords. As this involves sending along 

overhead (a triple for the LZ77 algorithm), the net result will be an expansion 

rather than a compression. 
 

Although this is an extreme situation, there are less drastic circumstances in which 

the finite view of the past would be a drawback. The LZ78 algorithm solves this 

problem by dropping the reliance on the search buffer and keeping an explicit 

dictionary. This dictionary has to be built at both the encoder and decoder, and 

care must be taken that the dictionaries are built in an identical manner. The inputs 

are coded as a double <i, c>, with i being an index corresponding to the dictionary 

entry that was the longest match to the input, and c being the code for the 

character in the input following the matched portion of the input. As in the case 

of LZ77, the index value of 0 is used in the case of no match. This double then 

becomes the newest entry in the dictionary. Thus, each new entry into the 

dictionary is one new symbol concatenated with an existing dictionary entry. To 

see how the LZ78 algorithm works, consider the following example. 



   

Explanation Example: 
 

 

Example: Let us encode the following sequence using the LZ78 approach: 

 

 

where b/ stands for space. Initially, the dictionary is empty, so the first few 

symbols encountered are encoded with the index value set to 0. The first three 

encoder outputs are <0, C(w)>, <0, C(a)>, <0, C(b)>, and the dictionary looks 

like Table 5.4. 
 

The fourth symbol is a b, which is the third entry in the dictionary. If we append 

the next symbol, we would get the pattern ba, which is not in the dictionary, so 

we encode these two symbols as <3, C(a)>, and add the pattern ba as the fourth 

entry in the dictionary. Continuing in this fashion, the encoder output and the 

dictionary develop as in Table 5.5. Notice that the entries in the dictionary 

generally keep getting longer, and if this particular sentence was repeated often, 

as it is in the song, after a while the entire sentence would be an entry in the 

dictionary. 
 



   

 
 

While the LZ78 algorithm has the ability to capture patterns and hold them 

indefinitely, it also has a rather serious drawback. As seen from the example, the 

dictionary keeps growing without bound. In a practical situation, we would have 

to stop the growth of the dictionary at some stage, and then either prune it back 

or treat the encoding as a fixed dictionary scheme. 
 

7.2.3 LZW 

There are a number of ways the LZ78 algorithm can be modified, and as is the 

case with the LZ77 algorithm, anything that can be modified probably has been. 

The most well-known modification, one that initially sparked much of the interest 

in the LZ algorithms, is a modification by Terry Welch known as LZW. Welch 

proposed a technique for removing the necessity of encoding the second element 

of the pair <i, c>. That is, the encoder would only send the index to the dictionary. 
 

Before encoding/decoding process is done, firstly the encoder will initialize a 

dictionary with the basic symbols (characters) of the message, it’s usually 0-255 

index of ASCII characters. So, the default value of the dictionary will be 256 

ASCII characters, which means single character will be always encoded by an 

index from 0-255, and the string from 256 – 2^n (two power of n where n is the 

bit length being used) . So, if we use 10 bits, it means that there are 0-1024 

possible index in dictionary to encode the characters or strings from a message. 

The length of the dictionary can be arbitrary, but Terry Welch suggested that it 

shouldn’t more than 12 bit, so the maximum index would be 4095. The problem 



   

is, what happens when the dictionary gets too large or full? The solution is to 

clear entries 256-4095 and start building the dictionary again where this approach 

must also be used by the decoder. Another solution is to let the dictionary full and 

only use the existing entries to encode the next symbols from the message. 

 

LZW Encoding Algorithm-Pseudo Code 
 
 

 
Example: LZW Encoding Algorithm 

 

Use the LZW algorithm to compress the string: BABAABAAAA 
 

First of all, encoder will read the first character of the message, that’s “B”. Since 

“B” always found in the dictionary, the encoder simply continues to read the next 

character (“A”) and concatenated them to be string “BA”. Since string “BA” 

doesn’t exist in the dictionary, the decoder then saved it into the dictionary and 

give an index to the output (B’s index in the dictionary) as our first output. The 

complete process can be seen in the below table. So, the final result from the 

encoding is the codes from the “output index” column: “66, 65, 256, 257, 65, 260, 

65”. Does this show the good compression? The answer is “yes”. Before 

compressing, the message required 10 x 8 = 80 bits, if the codes are converted 

into 9 bits, the result will be 7 x 9 = 63 bits. Now, we can save 17 bits. 



   

 
 

LZW Decoding Algorithm-Pseudo Code 
 
 

 
Example: LZW Decoding Algorithm 

let’s decode “66, 65, 256, 257, 65, 260, 65” to original string. 

 

The decompression result as shown in the table below is the collection of 

characters/strings from the output column, that’s “BABAABAAAA”. In the first 

line of the table shows you that the decoder doesn’t add any symbol into the 

dictionary since in the first step of decoding, the decoder translated the first code 



   

directly, that’s ok since the first code from the encoded message will be always 

found in the dictionary, so we don’t need to check it. 
 


