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8. Context-Based Coding 

 

In this section we present a number of techniques that use minimal prior 

assumptions about the statistics of the data. Instead they use the context of the 

data being encoded and the past history of the data to provide more efficient 

compression. We will look at a number of schemes that are principally used for 

the compression of text. These schemes use the context in which the data occurs 

in different ways. 
 

8.1 Prediction with Partial Match (PPM) 
 

The best-known context-based algorithm is the ppm algorithm, first proposed by 

Cleary and Witten in 1984. It has not been as popular as the various Ziv-Lempel- 

based algorithms mainly because of the faster execution speeds of the latter 

algorithms. Lately, with the development of more efficient variants, PPM-based 

algorithms are becoming increasingly more popular. 
 

The idea of the PPM algorithm is elegantly simple. We would like to use large 

contexts to determine the probability of the symbol being encoded. However, the 

use of large contexts would require us to estimate and store an extremely large 

number of conditional probabilities, which might not be feasible. Instead of 

estimating these probabilities ahead of time, we can reduce the burden by 

estimating the probabilities as the coding proceeds. This way we only need to 

store those contexts that have occurred in the sequence being encoded. This is a 

much smaller number than the number of all possible contexts. While this 

mitigates the problem of storage, it also means that, especially at the beginning 

of an encoding, we will need to code letters that have not occurred previously in 

this context. In order to handle this situation, the source coder alphabet always 

contains an escape symbol, which is used to signal that the letter to be encoded 

has not been seen in this context. 
 

The basic algorithm initially attempts to use the largest context. The size of the 

largest context is predetermined. If the symbol to be encoded has not previously 

been encountered in this context, an escape symbol is encoded, and the algorithm 

attempts to use the next smaller context. If the symbol has not occurred in this 

context either, the size of the context is further reduced. This process continues 

until either we obtain a context that has previously been encountered with this 

symbol, or we arrive at the conclusion that the symbol has not been encountered 

previously in any context. In this case, we use a probability of 1/M to encode the 

symbol, where M is the size of the source alphabet. For example, when coding 

the a of probability, we would first attempt to see if the string proba has 

previously occurred— that is, if a had previously occurred in the context of prob. 

If not, we would encode an escape and see if a had occurred in the context of rob. 
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If the string roba had not occurred previously, we would again send an escape 

symbol and try the context ob. 
 

Continuing in this manner, we would try the context b, and failing that, we would 

see if the letter a (with a zero-order context) had occurred previously. If a was 

being encountered for the first time, we would use a model in which all letters 

occur with equal probability to encode a. This equiprobable model is sometimes 

referred to as the context of order -1. As the development of the probabilities with 

respect to each context is an adaptive process, each time a symbol is encountered, 

the count corresponding to that symbol is updated. 

 

 

Example: 
 

Let’s encode the sequence: thisb/isb/theb/tithe 
 

Assuming we have already encoded the initial seven characters thisb/is, the 

various Counts and Cum_Count arrays to be used in the arithmetic coding of the 

symbols are shown in Tables 6.1–6.4. In this example, we are assuming that the 

longest context length is two. This is a rather small value and is used here to keep 

the size of the example reasonably small. A more common value for the longest 

context length is five. 
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We will assume that the word length for arithmetic coding is six. Thus, l = 000000 

and u = 111111. As thisb/is has already been encoded, the next letter to be 

encoded is b/. The second-order context for this letter is is. Looking at Table 6.4, 

we can see that the letter b/ is the first letter in this context with a Cum_Count 

value of 1. As the Total_Count in this case is 2, the update equations for the lower 

and upper limits are 
 

 
As the MSBs of both l and u are the same, we shift that bit out, shift a 0 into the 

LSB of l, and a 1 into the LSB of u. The transmitted sequence, lower limit, and 

upper limit after the update are 
 

Transmitted sequence: 0 
 

l: 000000 

u: 111111 
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We also update the counts in Tables 6.2–6.4. The next letter to be encoded in the 

sequence is t. The second-order context is sb/. Looking at Table 6.4, we can see 

that t has not appeared before in this context. We therefore encode an escape 

symbol. Using the counts listed in Table 6.4, we update the lower and upper 

limits: 

 

 

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into 

the LSB of l, and 1 into u, restoring l to a value of 0 and u to a value of 63. The 

transmitted sequence is now 01. After transmitting the escape, we look at the first- 

order context of t, which is b/. Looking at Table 6.3, we can see that t has not 

previously occurred in this context. To let the decoder know this, we transmit 

another escape. Updating the limits, we get 
 

 

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the 

LSB of l and 1 into the LSB of u. The transmitted sequence is now 011. Having 

escaped out of the first-order contexts, we examine Table 6.5, the updated version 

of Table 6.2, to see if we can encode t using a zero-order context. Indeed we can, 

using the Cum_Count array, update l and u: 
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The three most significant bits of both l and u are the same, so we shift them out. 

After the update we get 
 

Transmitted sequence: 011000 
 

l: 000000 

u: 110111 
 

The next letter to be encoded is h. The second-order context b/t has not occurred 

previously, so we move directly to the first-order context t. The letter h has 

occurred previously in this context, so we update l and u and obtain 
 

Transmitted sequence: 0110000 
 

l: 000000 
u: 110101 

 

The method of encoding should now be clear. At this point the various counts are 

as shown in Tables 6.6–6.8. 
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8.2 Burrows-Wheeler Transform 

 

The Burrows-Wheeler Transform (BWT) algorithm also uses the context of the 

symbol being encoded, but in a very different way, for lossless compression. The 

transform that is a major part of this algorithm was developed by Wheeler in 

1983. However, the BWT compression algorithm, which uses this transform, saw 

the light of day in 1994. Unlike most of the previous algorithms we have looked 

at, the BWT algorithm requires that the entire sequence to be coded be available 

to the encoder before the coding takes place. 
 

The algorithm can be summarized as follows. Given a sequence of length N, we 

create N − 1 other sequences where each of these N − 1 sequences are a cyclic 

shift of the original sequence. These N sequences are arranged in lexicographic 

order. The encoder then transmits the sequence of length N created by taking the 

last letter of each sorted, cyclically shifted, sequence. This sequence of last letters 

L, and the position of the original sequence in the sorted list, are coded and sent 

to the decoder. As we shall see, this information is sufficient to recover the 

original sequence. 
 

Example: Let’s encode the sequence thisb/isb/the 
 

We start with all the cyclic permutations of this sequence. As there are a total of 

11 characters, there are 11 permutations, shown in Table 6.14. 
 



Data Compression  

 

 

Now let’s sort these sequences in lexicographic (dictionary) order (Table 6.15). 

The sequence of last letters L in this case is 
 

L: sshtthb/iib/e 
 

Notice how like letters have come together. If we had a longer sequence of letters, 

the runs of like letters would have been even longer. The mtf algorithm, which 

we will describe later, takes advantage of these runs. The original sequence 

appears as sequence number 10 in the sorted list, so the encoding of the sequence 

consists of the sequence L and the index value 10. 
 

Now that we have an encoding of the sequence, let’s see how we can decode the 

original sequence by using the sequence L and the index to the original sequence 

in the sorted list. The important thing to note is that all the elements of the initial 

sequence are contained in L. We just need to figure out the permutation that will 

let us recover the original sequence. 
 

The first step in obtaining the permutation is to generate the sequence F consisting 

of the first element of each row. That is simple to do because we lexicographically 

ordered the sequences. Therefore, the sequence F is simply the sequence L in 

lexicographic order. In our example this means that F is given as 
 

F: b/b/ehhiisstt 
 

We can use L and F to generate the original sequence. Look at Table 6.15 

containing the cyclically shifted sequences sorted in lexicographic order. Because 

each row is a cyclical shift, the letter in the first column of any row is the letter 

appearing after the last column in the row in the original sequence. If we know 

that the original sequence is in the kth row, then we can begin unravelling the 

original sequence starting with the kth element of F. 
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Example: In our example 
 

 

The original sequence is sequence number 10, so the first letter in of the original 

sequence is F[10] = t. To find the letter following t we look for t in the array L. 

There are two t’s in L. Which should we use? The t in F that we are working with 

is the lower of two t’s, so we pick the lower of two t’s in L. This is L[4]. Therefore, 

the next letter in our reconstructed sequence is F[4] = h. The reconstructed 

sequence to this point is th. To find the next letter, we look for h in the L array. 

Again, there are two h’s. The h at F[4] is the lower of two h’s in F, so we pick 

the lower of the two h’s in L. This is the fifth element of L, so the next element in 

our decoded sequence is F[5] = i. The decoded sequence to this point is thi. The 

process continues as depicted in Figure 6.1 to generate the original sequence. 
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Why go through all this trouble? After all, we are going from a sequence of length 

N to another sequence of length N plus an index value. It appears that we are 

actually causing expansion instead of compression. The answer is that the 

sequence L can be compressed much more efficiently than the original sequence. 

Even in our small example we have runs of like symbols. This will happen a lot 

more when N is large. Consider a large sample of text that has been cyclically 

shifted and sorted. Consider all the rows of A beginning with heb/. With high 

probability heb/ would be preceded by t. Therefore, in L we would get a long run 

of t’s. 
 

8.3 Move-to-Front Coding 
 

A coding scheme that takes advantage of long runs of identical symbols is the 

move-to-front (MTF) coding. In this coding scheme, we start with some initial 

listing of the source alphabet. The symbol at the top of the list is assigned the 

number 0, the next one is assigned the number 1, and so on. The first time a 

particular symbol occurs, the number corresponding to its place in the list is 

transmitted. Then it is moved to the top of the list. If we have a run of this symbol, 

we transmit a sequence of 0s. This way, long runs of different symbols get 

transformed to a large number of 0s. Applying this technique to our example does 

not produce very impressive results due to the small size of the sequence, but we 

can see how the technique functions. 
 

Example: Let’s encode L = sshtthb/iib/e. Let’s assume that the source alphabet 

is given by A = { b/, e, h, i, s, t}.We start out with the assignment 
 

 

The first element of L is s, which gets encoded as a 4. We then move s to the top 

of the list, which gives us 
 

 

The next s is encoded as 0. Because s is already at the top of the list, we do not 

need to make any changes. The next letter is h, which we encode as 3. We then 

move h to the top of the list: 
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The next letter is t, which gets encoded as 5. Moving t to the top of the list, we 

get 
 

 

The next letter is also a t, so that gets encoded as a 0. Continuing in this fashion, 

we get the sequence: 
 

40350135015 
 

As we warned, the results are not too impressive with this small sequence, but we 

can see how we would get large numbers of 0s and small values if the sequence 

to be encoded was longer. 


