Diyala University
College of Engineering
Computer & Software
Engineering Department

Fourth Year 2012/2013

Cryptographic Data Integrity Algorithms

Chapter 4/Part1
Messaqge Authentication: Hashes and MAC

PRESENTED BY
DR. ALl J. ABBOUD

4. Objectives

* Message Authentication.

* Authentication Functions.

* Message Encryption as Authentication.
* Authentication based on Hash Functions.
* Basic Functions of Hash Functions.
* A Few Simple Hash Functions.

* Birthday Attacks.

* MD5 Hash Algorithm.

* Secure Hash Algorithm (SAH).

4.1 Message Authentication

Goal here: having received a message one would like to make sure that the
message has not been altered on the way
2 Produce a short sequence of bits that depends on the message and on a secret key

2 To authenticate the message, the partner will compute the same bit pattern, assuming
he shares the same secret key

This does not necessarily includes encrypting or signing the message
The message can be sent in plain, with the authenticator appended
This 1s not a digital signature: the receiver can produce the same MAC

L

L

2 One may encrypt the authenticator with his private key to produce a digital signature
2 One may encrypt both the message and the authenticator

Possible attacks on message authentication:
2 Content modification

2 Sequence modification — modifications to a sequence of messages, including
Insertion, deletion, reordering

2 Timing modification — delay or replay messages

4.2 Authentication Functions

Three types of authentication exist
2 Message encryption - the ciphertext serves as authenticator

1 Message authentication code (MAC) - a public function of the message
and a secret key producing a fixed-length value to serve as
authenticator

This does not provide a digital signature because A and B share the same
key

2 Hash function - a public function mapping an arbitrary length message
into a fixed-length hash value to serve as authenticator

This does not provide a digital signature because there s no key

4.3 Message Encryption as Authentication

Main idea here: the message must have come from A because the ciphertext can be
decrypted using his (secret or public) key

Also, none of the bits in the message have been altered because an opponent does not
know how to manipulate the bits of the ciphertext to induce meaningful changes to the
plaintext

Conclusion: encryption (either symmetric or public-key) provides authentication as well
as confidentiality
Some careful considerations are needed here:
2 How does B recognize a meaningful message from an arbitrary
sequence of bits?
= He can apply the decryption key to any sequence of bits he receives
o This is not necessarily easy task if the message is some sort of binary
file
a2 Immediate idea of attack: send arbitrary bit sequences to disrupt the
receiver — he will try to figure out the meaning of that bit sequence
Defense against this type of attack: add to the message a certain
structure such as an error-correcting code (e.g., check-sum bits) and
then encrypt the whole file

a2 B will detect illegitimate messages because they will not have the
required structure

4.3 Message Encryption as Authentication

A — B: E [M]
*Provides confidentiality
—Only A and B share K
*Provides a degree of authentication
— Could come only from A
— Has not been altered in transit
— Requires some formatting/redundancy
*[Does not provide signature
— Receiver could forge message
— Sender could deny message

(a) Symmelric encryption

A — B: Egy [M]
*Provides confidentiality
— Onmly B has KR, to decrypt

*Provides no authentication
— Any party could use R’Ub to encrypt message and claim to be A

(b) Public-key encryption: confidentiality

A — B: Egg [M]
*Provides authentication and signature
— Only A has KR_ to encrypt
— Has not been altered in transit
— Requires some formatting/redundancy
— Any party can use KU _ to verify signature

(c) Public-key encryption: authentication and signature

A —B: Egy,[Exr, (M)]
=Provides confidentiality because of KU/,
sProvides authentication and signature because of Kr

(d) Public-key encryption: confidentiality, authentication, and signature

4.3 Message Encryption as Authentication

Often one needs alternative authentication schemes than just encrypting
the message

d

Sometimes one needs to avoid encryption of full messages due to legal
requirements

Encryption and authentication may be separated in the system architecture

If a message is broadcast to several destinations in a network (such as a
military control center), then it is cheaper and more reliable to have just one
node responsible to evaluate the authenticity — message will be sent in plain
with an attached authenticator

If one side has a heavy load, it cannot afford to decrypt all messages - it will
just check the authenticity of some randomly selected messages

If the message is sent encrypted, it is of course protected over the network.
However, once the receiver decrypts the message, it is no longer secure.
Using a different type of authentication protects the message also on the local
computer

4.4 Authentication based on hash functions

= A fixed-length hash value h is generated by a function H that takes as input a
message of arbitrary length: h=H(M)

2 Asends M and H(M)
2 Bauthenticates the message by computing H(M) and checking the match

= Requirements for a hash function

H can be applied to a message of any size

H produces fixed-length output

Computationally easy to compute H(M)

Computationally infeasible to find M such that H(M)=h, for a given h

Computationally infeasible to find M’ such that H(M')=H(M), for a given M

Comﬁu;ationally infeasible to find M,M" with H(M)=H(M’) (to resist to birthday
S

[S Y R B N

attac

x Note 1: the hash function is not considered secret - some other means
are required to protect it

= Note 2: Hash function plus secrecy (key) gives a MAC - these are called
HMACs

4.4 Authentication based on hash functions

L hits

Message or data block M (variable length) |L

Hash value h
(fixed length)

Black Diagram of Cryptographic Hash Function: i = H(M)

4.4.1 Basic Functions of hash functions

4—Source A————p 4 Destination B——m
3z
i N ' l ™ -\'I _h H
a. Classical encryption | —Xi—(E) " > D} &)
of message+hash t I ¢ > Compe
Ex[M | HiM)] /
T ;
H ’
b. Only the hash value &) HM)
is encrypted
' ' : m
¢. Asin(b)butwith M) . M »{H) ¢
pll"nl'ate lalzey (provides [= E o Conpae
digital signature) * / —L *
H E d D
(b) — Ex[H(M)]
H
M ."TDI » M H\E) ¢
M;r "_—‘ KU, Compare
T f
© "E‘ s Egg [H(M)] E

10

4.4.1 Basic Functions of hash functions

«+— Source A

+— Destination B——»

d. Hashis encrypted " o ’@—' u C
with an asymmetric L e K compae
system, then a second Ex[M Il Ep, [HO]] A
encryption is applied (g Excg [HOM)]

e. No encryption here

but the hash is M w M 4‘:—@_”@—+

applied fo a message
where a secref fext S /
has been appended Ly HOM18)

ie)
> Hf?—» | 5 H
[el = Compare

K
Ex[MIHM I 5] d

¢ g Compare

f. Asin(e), but with
encryption

H(M I S)

11

4.4.1 Basic Functions of hash functions

A—B: Ex[M Il H(M)]
*Provides confidentiality
—Only A and B share K

*Provides authentication
—H(M) 1s cryptographically protected

(a) Encrypt message plus hash code

A—B: Ex|M IE g [H(M)]]
*Provides authentication and digital
signature
*Provides confidentiality

—Only A and B share K

(d) Encrypt result of (c) - shared secret key

A—B: M IE.[H(M)]
*Provides authentication
— H(M) 1s cryptographically protected

(b) Encrypt hash code - shared secret key

A—=B MIHMIS
*Provides authentication
—Only A and B share §

(e) Compute hash code of message plus
secret value

A—B: M I Egg [H(M)]

*Provides authentication and digital
signature
—H(M) 1s cryptographically protected
—Only A could create Egp [H(M]]

(c) Enerypt hash code - sender's private key

A—B: Eg[M I H(M)IIS]
*Provides authentication
—Only A and B share §
*Provides confidentiality
—Only A and B share K

(1) Encrypt result of (¢)

12

4.4.2 A few simple hash functions

= Bit-by-bit XOR of plaintext blocks: h=D,® D,%... © Dy
1 Provides a parity check for each bit position
1 Not very effective with text files: most significant bit always 0
2 Attack: to send blocks X, X, ..., Xy, choose X,=X,© X,2... @ X, ©h
o It does not help if (only) the hash is sent encrypted!
= Another example: rotated XOR - before each addition the hash value is
rotated to the left with 1 bit
2 Better than the previous hash on text files
1 Similar attack

= Another technique: cipher block chaining technigue without a secret key

2 Divide message into blocks D, D,...,Dy and use them as keys in the
encryption method (e.q., DES)

2 Hy=some initial value, H=E(H,,)
a H=HN
1 This can be attacked with the birthday attack if the key is short (as in DES)

13

4.4.3 Birthday Attacks

s (iven at least 23 people, the probability of having two people with
the same birthday is more then 0.5

2 1tis infact 0.5005
2 for 30 people it is more than 0.7
2 for 50 people it is more than 0.97

s Related problem: Given two sets X,Y each having k elements from
the set {1.2,...,N}, how large should k be so that the probability that
X and Y have a common element is more than 0.57

2 Answer: k should be larger than the square root of N
2 [fN=2" take k=2m"

14

4.4.3 Birthday Attacks

= Suppose a hash value on 64 bits is used (as the one based on DES)

a

In principle this is secure: given M, to find a message M' with H(M)=H(M'), one has to
generate in average 2% messages W

» Adifferent much more effective attack is possible

|

d

a

[I S I D R

Als prepared to s|%n the document by appending its hash value (on m bits) and then
encrypting the hash code with its private key

E will %snsrate 2m2 variations of the message M and computes the hash values for
all of them

E also generates 2" variations of the message M’ that she would really like to have
A authenticating and computes the hash values for all of them

By the birthday paradox, the Ersbsbmty that the two sets of hash values have one
element in common is more than 0.5 - she finds M and M’ with the same hash values
(messages expressing totally different things!)

E will offer M to A for hashing and then signing

E will send instead M’ with the signature A has produced

E breaks the protocol although she does not know A's private key!
Level of effort for the hash based on DES: 2%

15

4.4.3 Birthday Attacks

{This letter is / | am writing} to introduce {you to / to you} {Mr. / } Alfred

{P./} Barton, the {new / newly appointed} {chief/ senior} jewelry
buyer for {our / the} Northern {European / Europe} {area / division}.
He {will take /has taken} over {the / } responsibility for {all / the whole
of} our interests in {watches and jewelry / jewelry and watches} in
the {area/region}. ...

Complexity of the attack

2 Compute the two lists of messages: each requires an effort on the scale

o Sort them: again an effort on the scale of 2m2
2 Comparing two sorted tables can be done in linear timel

Two populﬂr hash ﬂlgorithms

MD5
SHA-1

16

4.4.4 MD5 Hash Algorithm

Most popular hash algorithm until very recently — concerns for its

security were raised and was proposed to be replaced by SHA-1,
SHA-2

Developed by Rivest at MIT

For a message of arbitrary length, it produces an output of 128 bits
2 Processes the input in blocks of 512 bits

ldea:

2 Start by padding the message to a length of 448 bits modulo 512 -
padding is always added even if the message is of required length; the
length of the message is added on 64 bits so that altogether the length
s a multiple of 512 bits

2 Several rounds, each round takes a block of 512 bits from the message
and mixes it thoroughly with a 128 bit buffer that was the result of the
previous round

1 The last content of the buffer is the hash value

17

4.4.4 MD5 Hash Algorithm

Padding
(1 to 512 hits)

Message length
(K mod 254,

- L = 812 hits = N = 32 bits \ -
- K hits \
Message 104..0 ’T
512 Dl 512 D= 512 hite—p= 513 hite—p=
¥y ¥y R Yq . Yia
3 512

128

128-Iit
digesi

18

4.4.4 MD5 Hash Algorithm

MD5 — the algorithm

Padding: add a bit 1 followed by the necessary number of bits 0

Append length — the length is represented on 64 bits
If the length is larger than 254, take the 64 least representative bits
Initialize MD buffer with the following 4 values, all on 32 bits:

A=0x01234567, B=0x89ABCDEF, C=0xFEDCBAQ98,
D=0x76543210

Process each message block of 512 bits in 4 rounds

Each round takes as input the 512 bits in the input and the content of
the buffer ABCD and updates the buffer ABCD (details on the next
slide)

The four words A,B,C,D in the output of the 4" round are added modulo
232 to the corresponding words A,B,C,D of the input to the first round

Output: the 128 bits in the buffer ABCD after the last round

19

4.4.4 MD5 Hash Algorithm

MD5 processing ot a single 512-bit block

* Each round has 16 steps

*T 1s a table

* F.G.H.I are Boolean functions (tables) on

B.C.D (bit-by-bit operations)

* X has the current 32 bits of the message
*The message has 512 bits, 1.e., 16 blocks of 32 bits
*Each of the 16 blocks 15 used exactly once in each
round
*Round 1: used in consecutive order
*Round 2: used in the order (1+51) mod 16,
=0, 15
*Round 3: used in the order (5+31) mod 16,
i=0, 15

«Round 4: used in the order 71 mod 16, 1=0____.15

el
=

™
1l

v

A

q
/128

Ay By Cy Dy

1

F, T[1...16], X[l
16 steps

Ay By Cy Dy

G, T[17..32]

. Xlp,t]

16 steps

Ay By Cy Dy

H. T[33_45]

. XIp1] J

16 steps

Ay By Cy Dy

Ll

1. T[49. 64].

X[p.i]
16 steps

L | ry b | Y l
[+I+I+ITJ

Y

L)

123

Vg

20

4.4.4 MD5 Hash Algorithm

One smgle step mn MD5

+ All operations here are on blocks of 32 bits

* T 1s a table

* g 15 one of the functions F,G.H.I (bit-wise function)
* X has the current 32 bits of the message

* CLS, 1s a circular left shift (rotation) with s bits
“+" 15 addition modulo 2*2

X[k]

T[i]

4.4.4 MD5 Hash Algorithm

Table T and truth
table ot F,G,H,I

b € i F G H I
] 0 0 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 0 l 1
1 0 1 0 1 0 1
1 1 0 1 1 0 0
1 1 1 1 1 1 0

(b} Tahle T, constructed from the sine function

D7 eaR478
EBCTBTLE
242070DB
ClEDCEEE
ESTCOFAF
4787celn
AB3I04B13
ro469501
6980958D8
8B44FTAF
FFFESBEL
895CD7BE
ABI0D1122
FD3871%3
AGTI43EE

459840811

Tr17]
T[18]
T[19]

T[30]
T[31]
T[32]

FE1E2L62
c040B340
2E5E5A51
ESBECTAR
DEZF105D
01441453
DEALEGRSE]
ETD3rnch
21E1CDE®G
c33707D6
F4DLODET
455A14FD
ASEIESNS
FCEFARIFE
6TRFOD2D3

Bo2adcBA

=]

[33]
[34]
[35]

[38]

[38]
[32]

2

=

FFEA3Y
3771r68l
633D6122
FDEE380¢c
R4BEER44
4BDECEAY
FEBE4EGD
BEBFBCTO
2B9BTECH
EARIZTFA
D4EF3085
04281005
DSp4D033
EGDESIES
LFA27CF3

C4RCEE6S

T[43]
T[50]
T[51]
T[52]
T[53]
T[54]
T[55]
T[56]
T[57]
T[5E]
T[53]
T[&0]
T[GE]l]
T[E2]
T[63]
T[]

B5845DD1
GEABTEAFE
FEZCEGED
A3014314
4E0811lAal
F7537ERZ
BD3AF235
2ADTDZBE

EBBGD3IS]1

22

4.4.4 MD5 Hash Algorithm
Strength ot MD5

Every bit of the output is a function of all bits of the input
Rivest’'s conjecture:

2 As strong as it can be for a 128-bit hash: birthday attack on the order of
254 and finding a message with a given digest is on the order of 2728

Vulnerabilities found in 1996, then after 10 years a number of other
weaknesses reported, most serious in 2008

a 2008: fake certification of SSL was demonstrated based on MD5
a currently classified as cryptographically weak

Used in HMAC

23

4.4.5 Secure Hash Algorithm (SHA)
Secure Hash Algorithm (SHA)

s Developed by NSA and adopted by NIST in FIPS 180-1 (1993)
2 SHA-1 specified in RFC 3174 — contains a C code implementation

= Part of a family of 3 hashes: SHA-0, SHA-1, SHA-2
2 SHA-1 most widely used

2 recommendations that SHA-2 should be used because of a potential
math weakness in SHA-1

o current competition for a new hash standard to be concluded in
December 2012

= Design based on MD4 (previous version of MD5)

= Takes as input any message of length up to 2°* bits and gives a
160-bit message digest

= Same structure as MDJ5, with block length of 512 bits and buffer of
160 bits

24

4.4.5 Secure Hash Algorithm (SHA)

The algorithm takes as input a message with a maximum length of less than 2'% bits
and produces as output a 512-bit message digest. The input 1s processed m 1024-bit
blocks.

Comparison of SHA Parameters

SHA-1 SHA-224 SHA-256 SHA-384 | SHA-512
Message 160 224 256 384 512
Digest Size
Message Size <78 < 7™ <7 < 7128 < 7128
Block Size 512 512 512 1024 1024
Waord Size 32 32 32 64 b4
Number of Steps 80 64 6d 80 &

Note: All sizes are measured in bits.

25

4.4.5 Secure Hash Algorithm (SHA)

~

N 10Z4 bats

L

128 hits
- L hits = -
I Message I;mmmf, » 4 L
. ' H H '
[| [] | | []
u] 1 1]
u] 1 1]
[}] [[]
u] 1 1]
[| [] | | []
u] 1 1]
u] 1 1]
[}] [[]
u] 1 1]
B—— 1024 bits —eds— 1024 hils ——a —— 1024 hils —
| M, M, My

I.' p— I.'
w w
v=Ho| [[#,_] H, Hy
-+ » - - -— hash code
512 hats 512 hits 512 hits

=+ =wind-ly-word addiGon mod o

Message Digest Generation Using SHA-512

26

4.4.5 Secure Hash Algorithm (SHA)

Step 1

Step 2

Step 3

Append padding bits. The message 1s padded so that its length is congruent
to 896 modulo 1024 [length = 896(mod 1024)]. Padding is always added,
even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1
bit followed by the necessary number of 0 bits.
Append length. A block of 128 bits is appended to the message. This block is
treated as an unsigned 128-bit integer (most significant byte first) and contains
the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer

multiple of 1024 bits in length. the expanded message is repre-
sented as the sequence of 1024-bit blocks M, M,, ..., | M y;, sO that the total

length of the expanded message 1s N < 1024 bits.

Initialize hash buffer. A 512-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented as eight 64-bit reg-
isters (a, b, c,d, e, f, g, h). These registers are initialized to the following 64-bit
integers (hexadecimal values):

a = 6A09E66TF3IBCC908 e = 510ELZ27FADEGE82D]
b = BB6TAEBL584CAAT3B f = 9BO056B88CZB3E6GCILF
c = 3C6EF372FE94F82B g = 1FE83DSABFB41BDGB
d = ALAFF53A5F1D36F1 h = 5BEOCD19137EZ179

27

4.4.5 Secure Hash Algorithm (SHA)

Step 4

Step 5

These values are stored in big-endian format, which i1s the most significant
byte of a word in the low-address (leftmost) byte position. These words were
obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

Process message in 1024-bit (128-word) blocks. The heart of the algorithm
is a module that consists of 80 rounds: this module 1s labeled F

Each round takes as input the 512-bit buffer value, abcdefgh, and updates
the contents of the buffer. At input to the first round, the buffer has the value of
the intermediate hash value, H; . Each round ¢ makes use of a 64-bit value W,
derived from the current 1024-bit block being processed (M;). These values are
derived using a message schedule described subsequently. Each round also
makes use of an additive constant K,, where 0 = ¢ = 79 indicates one of the
80 rounds. These words represent the first 64 bits of the fractional parts of the
cube roots of the first 80 prime numbers. The constants provide a “randomized”
set of 64-bit patterns, which should eliminate any regularities in the input data.
Table 11.4 shows these constants in hexadecimal format (from left to right).

The output of the eightieth round is added to the input to the first round
(H;_) to produce H,. The addition is done independently for each of the eight

words in the buffer with each of the corresponding words in H,_ . using addi-
tion modulo 2%,

Output. After all N 1024-bit blocks have been processed. the output from
the Nth stage is the 512-bit message digest.

28

4.4.5 Secure Hash Algorithm (SHA)

’,64
al J'J“ -:'l ff.'r el fl 1 A

—1--[Round 0 |--(—']
— 4—'

7 . nd 79

~ K

HHHH”
kufww

K,

l#ll¢ll4
v l"# v *#’4

panaaaan
Y

H;
SHA-512 Processing of a Single 1024-Bit Block

29

4.4.5 Secure Hash Algorithm (SHA)

We can summarize the behavior of SHA-512 as follows:

where

[V

H; = SUM,(H;_,, abcdefgh;)
MD = Hy

= nitial value of the abcdefgh buffer, defined in step 3

abcdefgh, = the output of the last round of processing of the ith message

N

SUMgy

MD

block

= the number of blocks in the message (including padding and
length fields)

= addition modulo 2% performed separately on each word of the
pair of inputs

= final message digest value

30

4.4.5 Secure Hash Algorithm (SHA)

| | & ¢
\ .__E_\l]

Elementary SHA-512 Operation (single round)

4.4.5 Secure Hash Algorithm (SHA)

Wy W Wy Wy

- 1024 bits
L
M;
Y Y Y +—
W.[j Wl L Wl 3
<+
64 bits

Weig Weois Wg Wi

|_LJ

Creation of 80-word Input Sequence for SHA-512 Processing of Single Block

u]iul.f W i Woe

32

4.4.5 Secure Hash Algorithm (SHA)

Example

We include here an example based on one in FIPS 180. We wish to hash a one-block
message consisting of three ASCII characters: “abc™, which is equivalent to the fol-

lowing 24-bit binary string:
01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a
length congruent to 896 modulo 1024. In this case of a single block, the padding
consists of 896 — 24 = §72bits, consisting of a “1” bit followed by 871 “0” bits.
Then a 128-bit length value is appended to the message, which contains the length
of the original message (before the padding). The original length is 24 bits, or a
hexadecimal value of 18. Putting this all together, the 1024-bit message block, in
hexadecimal, is

6162638000000000 Q0000000000 00000 OQOOQOOOQOCOO0QO0O00 CQOOQOOQOOOOOOOOOO
o000000000000000 DOOOODODOO0OOO0O0O00 OOOCOOODOOO0O0O0D COOOO00O0O0O0DO0DO00
oo0o0000000000000 QOOOODOOOO0O00O0000 OQOOVOOQOOQOOO0O0O00D QOOOOOOO0OODO0DO0O
o0o00000000000000 QO0OO00OOOO00000000 OQ0OOVOOQO0QO0O00O000 QOOOOOO0O00O0O0O0DOLE

This block is assigned to the words WO, ... W15 of the message schedule,
which appears as follows.
W, = 6162638000000000 Wws = 0000000000000000
W, = 0000000000000000 W = 0000000000000000
W, = 0000000000000000 Ww- = 0000000000000000
W, = 0000000000000000 W = 0000000000000000
W, = 0000000000000000 W = 0000000000000000

33

4.4.5 Secure Hash Algorithm (SHA)

W,, = 0000000000000000
W,; = 0000000000000000
W,, = 0000000000000000

W5 = 0000000000000000
Wi = 0000000000000000
W5 = 0000000000000018
As indicated in Figure 11.12, the eight 64-bit variables, a through h. are initial-

ized to values H;, through Hj ;. The following table shows the initial values of these
variables and their values after each of the first two rounds.

a 6a09e667f3bccS08 feafceb8bcfcddfb 1320£8c9fb872ccl
b bbbT7aeB8584caa73b 6a0%e667f3bcc908 foafceb8bcfcddfb
c 3cbef3T72fe94£82b bbb6T7ae8584caa73b 6a09%e667E£3bccS08
d ab4ff53abfld36fl Jcbef3T72fe94£82b bbé7ae8584caa’3b
e 510e527fade682dl 58cb02347ab51£91 c3d4ebfd4B650£ffa
f 9b05688c2blebclt 510e527fadebB82d1 58cb02347abbh1£91
g 1f83d%abfh41bdéeb Sb05688cZb3ebelf 510e527fadebfB82dl
h 5belcdl9137e2179 1f83d%abfbdlbdeb 9b05688c2b3lebclf

34

4.4.5 Secure Hash Algorithm (SHA)

Note that in each of the rounds, six of the variables are copied directly from
variables from the preceding round.
The process continues through 80 rounds. The output of the final round is

73a54f399fadblbZ 10d9c4c4d295599f6 d67806db8bldB8677 654efS%abec389cal
d08446aa79693ed7 9bbdd39778c07f%e 25c9%6a7768fbZaa3l ceb%fc3691ceB3Z6

The hash value is then calculated as

H{y, = 6a09e667f3bcc908 + 73a54f399fadblb2 ddaf35al93617aba

=
I

bb67ae8584caa’73ib + 10d9%cdcd2955989f6 = ccdl734%ae204131
Hi; = 3c6ef372fe94£82b + dA67806db8b148677 = 12e6fadeB89%a97eca2

H,; = a54ff53a5f1d36f1 + 654ef9abec389ca%9 = 0a%eeee64b55d39a

H,, = 510e527fade682dl + d08446aa79693ed7 2192992a274fcla8

JebaicZiaifechbbd

H;s = 9b05688c2b3e6clf + 9bbdd39778c07£9e
H; = 1f83d9abfb41bdéb + 25c96a7768fb2aa3 = 454d4423643ce80e
Hi{7 = 5belcdl9137e2179 + ceb9fc3691ce8326 = 2a%ac94fab4cadsf

The resulting 512-bit message digest is

ddafibal93ieliaba ccdl734922e204131 12e6fadeB9357ecaZl (aSecesehdbhb5di%a
21929923274 fcla8 36baic23aifeebbd 454d4423643ce8le 2a%ac94faSdcadsf

35

End of Chapter 4/Partl

