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4.3. Objectives

Key points.
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SCHNORR DIGITAL SIGNATURE SCHEME.
DIGITAL SIGNATURE STANDARD

DIGITAL SIGNATURE Algorithm.

DSS Signing and Verifying.



4.3.1 Key Points

» A digital signature is an authentication mechanism that enables the creator of a
message to attach a code that acts as a signature. Typically the signature is formed
by taking the hash of the message and encrypting the message with the creator’s
private key. The signature guarantees the source and integrity of the message.

» The digital signature standard (DSS) is an NIST standard that uses the secure hash
algorithm (SHA).

» The most important development from the work on public-key cryptography is the

digital signature . The digital signature provides a set of security capabilities that
would be difficult to implement in any other way.



4.3.2 Generic Model of Digital Sighature Process
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4.3.3 Essential Elements of Digital Signature Process
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4.3.4 Essential Elements of Digital Signature Process

In situations where there is not complete trust between sender and receiver,
something more than authentication is needed. The most attractive solution to
this problem is the digital signature. The digital signature must have the following
properties:

» It must verify the author and the date and time of the signature.
» It must authenticate the contents at the time of the signature.
» It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.



4.3.5 Attacks on Digital Signatures

Key-only attack: C only knows A’s public key.

Known message attack: C is given access to a set of messages and their
signatures.

Generic chosen message attack: C chooses a list of messages before attempt-
ing to breaks A’s signature scheme, independent of A’s public key. C then
obtains from A valid signatures for the chosen messages. The attack is generic,
because it does not depend on A’s public key; the same attack is used against
everyone.

Directed chosen message attack: Similar to the generic attack, except that the
list of messages to be signed is chosen after C knows A’s public key but before
any signatures are seen.

Adaptive chosen message attack: C is allowed to use A as an “oracle.” This
means the A may request signatures of messages that depend on previously
obtained message—signature pairs.

Total break: C determines A’s private key.

Universal forgery: C finds an efficient signing algorithm that provides an
equivalent way of constructing signatures on arbitrary messages.

Selective forgery: C forges a signature for a particular message chosen
by C.

Existential forgery: C forges a signature for at least one message. C has

no control over the message. Consequently, this forgery may only be a minor
nuisance to A.
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4.3.6 Digital Signature Requirements

* The signature must be a bit pattern that depends on the message being

signed.

* The signature must use some information unique to the sender to prevent

both forgery and
t must be relative

t must be relative

t must be compu

enial.
y easy to produce the digital signature.

y easy to recognize and verify the digital signature.

tationally infeasible to forge a digital signature, either by

constructing a new message for an existing digital signature or by constructing
a fraudulent digital signature for a given message.

* [t must be practical to retain a copy of the digital signature 1n storage.



4.3.8 ELGAMAL DIGITAL SIGNATURE SCHEME

As with EIGamal encryption, the global elements of E1Gamal digital signature
are a prime number ¢ and o, which is a primitive root of g. User A generates a
private/public key pair as follows.

[. Generate a random integer X4, such that 1 < X, < g — 1.
2. Compute Y 4 = a4 modg.
5. Als private key is X 4; A’s pubic key is {q, «, Y.

To sign a message M, user A first computes the hash m = H(M), such that m

is an integer in the range 0 = m = ¢ — 1. A then forms a digital signature as
follows,

I. Choose a random integer K suchthat1 = K = g — l and ged(K,q — 1) = 1.
That is, K is relatively prime to g — 1.

2. Compute S; = e®*mod g. Note that this is the same as the computation of C,
for ElGamal encryption.

Compute K 'mod (g — 1).That is,compute the inverse of K modulo g — 1.
Compute S, = K '(m — X 4,5,)mod (g — 1).
5. The signature consists of the pair (51, 5,).

] o = Gl
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4.3.8 ELGAMAL DIGITAL SIGNATURE SCHEME

The signature is valid if V; = V,. Let us demonstrate that this is so. Assume
that the equality 1s true. Then we have

«"mod g = (Y4)*(S;)"mod g assume Vi = V;

o"mod g = u""ﬂ"gluﬁf mod g substituting for ¥, and S,
" 9 mod g = o> mod ¢ rearranging ferms

m— X5 = K§;mod (g — 1) property of primitive roots

m — XS = KK '(m — X,5;) mod (g — 1) substituting for §,

For example, let us start with the prime field GF(19); that is, g = 19. It has
primitive roots {2,3,10,13, 14,15}, as shown in Table 8.3. We choose a = 10.
Alice generates a key pair as follows:

. Alice chooses X4 = 16.
. Then Y, = a®mod ¢ = «'*mod 19 = 4.

. Alice’s private key is 16; Alice’s pubic key 1s {g, a, ¥;} = {19, 10, 4].

L) | ™ ] —
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4.3.8 ELGAMAL DIGITAL SIGNATURE SCHEME

Suppose Alice wants to sign a message with hash value m = 14.

Alice chooses K = 5, which is relatively prime tog — 1 = 18.
S, = a*mod g = 10°mod 19 = 3

K 'mod(g —1) =5 'mod 18 = 11.

8, = K '(m — XpSy)mod(g — 1) = 11(14 — (16)(3))mod 18 = —374
mod 18 = 4.

Bob can verify the signature as follows.

V, = e"mod g = 10" mod 19 = 16.
V, = (V)5S mod g = (4*)(3*)mod 19 = 5184 mod 19 = 16.

Thus, the signature is valid.
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4.3.9 SCHNORR DIGITAL SIGNATURE SCHEME

As with the ElGamal digital signature scheme, the Schnorr signature scheme
is based on discrete logarithms . The Schnorr scheme
minimizes the message-dependent amount of computation required to generate a
signature. The main work for signature generation does not depend on the message
and can be done during the idle time of the processor. The message-dependent part
of the signature generation requires multiplying a 2n-bit integer with an n-bit
integer.

The scheme is based on using a prime modulus p, with p — 1 having a prime
factor g of appropriate size; that is, p — 1 = (mod q). Typically, we use p = 2!
and ¢ = 2'%. Thus, p is a 1024-bit number, and g is a 160-bit number, which is also
the length of the SHA-1 hash value.

The first part of this scheme is the generation of a private/public key pair,

which consists of the following steps.

[

. Choose primes p and g, such that ¢ is a prime factor of p — 1.

| ]

. Choose an integer a, such that «? = 1mod p. The values a, p, and g comprise a
global public key that can be common to a group of users.

"4-r

. Choose a random integer s with 0 < s < g.This is the user’s private key.

o =

. Calculate v = @ mod p.This is the user’s public key.
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4.3.9 SCHNORR DIGITAL SIGNATURE SCHEME

A user with private key s and public key v generates a signature as

follows.

1.

¥
e

Choose a random integer r with 0 < r < g and compute x = a"mod p. This
computation 1s a preprocessing stage independent of the message M to be

signed.
Concatenate the message with x and hash the result to compute the value e:

e = H(M Il x)

Compute y = (r + se)mod ¢q. The signature consists of the pair (e, v).

Any other user can verify the signature as follows.

. Compute x' = a*v*mod p.
. Verify thate = H(M Il x").

To see that the verification works, observe that
x'=adv=da"=a"=d =x(modp)

Hence, H(M Il x') = H(M Il x).
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4.3.10 DIGITAL SIGNATURE STANDARD

The National Institute of Standards and Technology (NIST) has published Federal
Information Processing Standard FIPS 186, known as the Digital Signature
Standard (DSS). The DSS makes use of the Secure Hash Algorithm (SHA)
described in Chapter 12 and presents a new digital signature technique, the Digital
Signature Algorithm (DSA). The DSS was originally proposed in 1991 and revised
in 1993 in response to public feedback concerning the security of the scheme. There
was a further minor revision in 1996. In 2000, an expanded version of the standard
was issued as FIPS 186-2, subsequently updated to FIPS 186-3 in 2009. This latest
version also incorporates digital signature algorithms based on RSA and on elliptic
curve cryptography.
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4.3.11 The Digital Signature Algorithm

Global Public-Key Components

prime number where 2=~ ! < p < 2
for512 = L = 1024 and L a multiple of 64;
1.e., bit length of between 512 and 1024 bits
in increments of 64 bits

prime divisor of (p — 1), where 2% < g < 2160,
.e., bit length of 160 bits

= P — g mod p,
where h is any integerwith | <h < (p — 1)
such that A% ~ M mod p = |

Signing
r = (g" mod p) mod g
s =[k"(HM) + xr)] mod g

Signature = (1, 5)

User’s Private Key

Verifying
w = [s']_' mod g
u; = [HIM | mod g
u; = (r'jwmod g

v = [(g" ¥**) mod p] mod g

random or pseudorandom integer with0 << x << g TEST:v=1r'
User’s Public Key M = message to be signed
= g'mod p H(M) = hash of M using SHA-1

User's Per-Message Secret Number

= random or pseudorandom integer with 0 << k < g

M, r'. 5" = received versions of M, r. 5
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4.3.12 DSS Signing and Verifying
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End of Chapter 4/Part?2



The EIGamal Cryptosystem

Global Public Elements

prime number

o @ < ¢ and o a primitive root of g

Key Generation by Alice

Select private X , X,<qg-1
Calculate ¥, Y,=a ¥4 mod q
Public key PU={g.0.Y,}
Private key Xy

Encryption by Bob with Alice’s Public Key

Plaintext: M<gqg

Select random integer k k<g

Calculate K K=(Y, modg
Calculate C, Ci=a*modg
Calculate G, C; = KM mod g
Ciphertext: (C).G)

Decryption by Alice with Alice's Private Key

Ciphertext: (C.C,)
Calculate K K=(C, Y mod g
Plaintext: M=(C, K~1)mod g
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