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Characteristics of �“Good�” Ciphers

Shannon Communication Theory of Secrecy 
Systems (1949), pg. 15
�– Amount of secrecy should be proportional to value
�– Key needs to be transmitted/memorized  should be 

as short as possible
�– Encryption/decryption should be as simple as possible
�– Errors shouldn't propagate
�– Size of the ciphertext should be the same as plaintext
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Trustworthy Encryption Properties

Encryption systems should:

�– be based on sound mathematics

�– be analyzed by experts

�– stand the test of time
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Stream and Block Ciphers

stream ciphers 
�– encrypt one symbol (bit, byte, or word) at a time
�– encrypt the ith symbol with the ith part of the keystream

block ciphers encrypt larger blocks of plaintext
�– block size  usually 64 bits or more

�– encrypt all blocks with the same key
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Block Ciphers We've Done

Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p
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Block Ciphers We've Done
Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p

Not stream ciphers?
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Block Ciphers We've Done
Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p

Not stream ciphers?
�– No.
�– Stream ciphers use the ith part of the keystream to 

encrypt symbol i.
�– These use the same key for all plaintext chars.
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Stream Ciphers We've Done

Cipher Period
p
26**r

Vernam none

Vigenere with period p
Rotor machine with r rotors
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Stream vs. Block Ciphers

Stream Ciphers Block Ciphers
Advantages  fast  high diffusion

 low error propagation  more immunity to insertion
Disadvantages  low diffusion  slower

 vulnerable to insertions and modifications  error propagation
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Question

When we do a simple substitution cipher
�– We map a character in P to a character in C

Question:
�– Is it possible for two different chars in P to map to the 

same character in C?
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Question

When we do a simple substitution cipher
�– We map a character in P to a character in C

Question:
�– Is it possible for two different chars in P to map to the 

same character in C?

Answer:
�– no.  otherwise, how would you decrypt?  example:

P A B C D E F G H I J K L M N ...
C J E F K M E E P M D S T L A ...
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and now ...

same discussion sounding like you ate a math book
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Math Review:  Functions

Recall - A function is defined by two sets A, and 
B, and a rule that maps the elements in A to 
elements in B
�– A is called the domain
�– B is called the co-domain

Notation �– f: A  B
A function is one-to-one (1 1) if for every 
element in B, there is at most one element in A

A B
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Cryptographic Functions

The cryptographic algorithms that we've been 
discussing (except maybe the random 
homophonic ciphers) are functions.
Plaintext alphabet is P
Ciphertext alphabet is C
The cryptographic algorithm maps the characters 
in P to C
f: P C
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Cryptographic functions are 1 1

Question:
�– Why must cryptographic functions be 1 1?
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Cryptographic functions are 1 1

Question:
�– Why must cryptographic functions be 1 1?

Answer:
�– If they weren't 1 1 this would mean that there are 

elements in C for which there are more than one 
element in P.

�– How would we do decryption?
�– Example:

P A B C D E F G H I J K L M N ...
C J E F K M E E P M D S T L A ...
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A simple function

y = x2

A B

what's A and B?
is it practical to specify the function like this?

A 1 2 3 4 5 6 7 ...
B 1 4 9 16 25 36 49 ...
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more complex crypto

for y=x2 it's easier to define function without 
drawing the map

we'd like the same thing for crypto function
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Block Ciphers
Plain substitution ciphers that we've discussed
�– example:

A K
B D
C Q
...

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001  0x81A7 C961
0x0000 0002  0xB132 8DC5
...
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Block Ciphers
Plain substitution ciphers that we've discussed
�– example:  A K, B D, C Q, ...
�– how many bits are required to specify the mapping?
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Block Ciphers

Plain substitution ciphers that we've discussed
�– example:  A K, B D, C Q, ...
�– how many bits are required to specify the mapping?

P C
A K
B D
C Q
D M
E S
F Z
G H
H O
... ...

26
 c

ha
ra

ct
er

s
Answer:
�– There are 26 characters
�– It takes 5 bits per character
�– 26*5 = 130 bits
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Bits to encode 64-bit block ciphers

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001  0x81A7 C961
0x0000 0002  0xB132 8DC5
...

How many bits would it take to encode this?
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Bits to encode 64-bit block ciphers

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001  0x81A7 C961
0x0000 0002  0xB132 8DC5
...

How many bits would it take to encode this?
�– If we made a table, there would be:

264 entries
each entry would be 64 bits long
264 * 26 = 270 bits
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Bits to encode 64-bit block ciphers

So for larger block sizes, we have to do something 
different

Goal:
�– generate a 1 1 mapping
�– make it look as random as possible
�– don't store all possible input/output pairs
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Background

Early 70s non-military 
crypto research unfocused

National Bureau of 
Standards (now NIST) 
wanted algorithm which:
�– is secure
�– open
�– efficient
�– useful in diverse 

applications

IBM Lucifer algorithm 
submitted
DES based on Lucifer
controversies over:
�– reduced key size
�– design (of S-boxes)
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Description of DES

block cipher.  64-bit blocks

same algorithm used for 
encryption, decryption

56-bit keys
�– represented as 64-bit 

number
�– but every 8th bit is for 

parity only  usually 
ignored

symmetric:  receiver uses 
same key to decrypt

uses basic techniques of 
encryption.  provides
�– confusion (substitutions) 
�– diffusion (permutations)

same process 16 
times/block

uses standard arithmetic and 
logical operators
�– efficient hardware 

implementations
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But first ...

DES is very complicated
Simplified DES first.
�– educational protocol
�– similar to DES
�– works with much smaller units
�– easier to see
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S-DES

S-DESS-DES
8 bit plaintext block

10 bit key

8 bit ciphertext
block
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S-DES overview

for each block, permutations and substitutions
5 functions:
1) initial permutation (IP)
2) a complex function f

K

consists of permutations and substitutions
key is applied

3) special permutation:  switch the left and right sides
4) f

K 
again

5) inverse of initial permutation (IP-1)
32Pfleeger, Security in Computing, ch. 2

S-DES:  more detailed look

S-DESS-DES
8 bit plaintext block

10 bit key

8 bit ciphertext
block

IP-1IP-1f
K

f
KSWSWf

K
f

KIPIP
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S-DES initial permutation

p
2
 p

6
 p

3
 p

1
 p

4
 p

8 
p

5 
p

7

example:
1 0 1 0    1 1 1 0

becomes:

0 1 1 1    0 0 1 1
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S-DES initial permutation

p
2
 p

6
 p

3
 p

1
 p

4
 p

8 
p

5 
p

7

example:
1 0 1 0    1 1 1 0

becomes:

0 1 1 1    0 0 1 1
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S-DES:  function f
K

f k L , R = L F R ,SK ,R

left 4 bits

right 4 bits

subkeyXOR
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key choice
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Back to Real World

now back to real DES ...

for more details on S-DES, check out supplement to 
Stallings' Cryptography and Network Security

http://williamstallings.com/Crypto/Crypto4e.html
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Back to Real World

now back to real DES ...

for more details on S-DES, check out supplement to 
Stallings' Cryptography and Network Security

http://williamstallings.com/Crypto/Crypto4e.html

39Pfleeger, Security in Computing, ch. 2

Description of DES
Break up plaintext into 64-bit blocks

Each block goes through 16 rounds
�– B

i
 = block after iteration i

�– L
i
 = LHS of block after iteration i

�– R
i 
= RHS of block after iteration i

For each block of plaintext:
�– initial permutation
�– for (i=1 to 16)

L
i
 = R

i-1

�– final permutation 
Ri=Li 1 f Ri 1 , k i

L
i-1

R
i-1

L
i

R
i

f K
i
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Description of DES
Break up plaintext into 64-bit blocks

Each block goes through 16 rounds
�– B

i
 = block after iteration i

�– L
i
 = LHS of block after iteration i

�– R
i 
= RHS of block after iteration i

For each block of plaintext:
�– initial permutation
�– for (i=1 to 16)

L
i
 = R

i-1

�– final permutation 
Ri=Li 1 f Ri 1 , k i

L
i-1

R
i-1

L
i

R
i

f K
i

combining LHS-RHS:
Feistel Structure
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Initial Permutation

Done before the 16 rounds

Read:  �“put bit 58 into the 1st position, put 50 into the 2nd 
position ...�”

Reversed by Inverse Initial Permutation (after round 16)

Problem with this? 

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

42Pfleeger, Security in Computing, ch. 2

Initial Permutation

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

Done before the 16 rounds

Read:  �“put bit 58 into the 1st position, put 50 into the 2nd 
position ...�”

Reversed by Inverse Initial Permutation (after round 16)

Problem with this?
�– Not really, but it doesn't add to the security 
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So What's f ?
L

i-1
R

i-1

L
i

R
i

f K
i
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L
i-1

R
i-1

L
i R

i

K
i

Expansion Permutation

S-box

P-box

So What's f ?

f
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Expansion Permutation

expand R
i
: 32 48 bits

all bits used at least 
once.  some twice.
R

i
 becomes same 

length as key for XOR
avalanche effect
�– few bits of plaintext 

affects many bits of 
ciphertext

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S
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Expansion Permutation

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S
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Expansion Permutation

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S

48Pfleeger, Security in Computing, ch. 2

S-boxes

take 48-bits from result of
�– expansion permutation       K

i

break into 8 6-bit blocks
�– block 1  box S

1

�– block 2  box S
2 

�– etc.

L
i-1

R
i-1

L
i

R
i

K
i

E

P

S
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48 bits

32 bits

S2 S3 S4 S5 S6S1 S7 S8

S boxes

Each box defines a substitution
�– 6-bit input
�– 4-bit output
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Example:  S box 1

bit 1 and 6 define the row.
bit 2-5 define col.
example: 010011

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
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Example:  S box 1

bit 1 and 6 define the row.
bit 2-5 define col.
example: 010011
�– bit 1,6 = 01  row 1
�– bit 2,3,4,5 = 1001  col 9
�– output = 6, i.e. 0110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
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Avalanche Effect

good ciphers:
�– change few plaintext bits  change many in 

ciphertext

pronounced in DES
�– big changes to block after only a few rounds
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Key Schedule

Key is 56 bits (64 �– 8 parity bits)
Goes through a permutation before round 1
Then for each round:
�– divide into two halves
�– circular shift of each half (shift 1 or two bits 

depending on round)
�– select 48 of the 56 bits
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Key Schedule

PC1 �– just a simple 
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i 
shifted 

either 1 or 2 bits (depending 
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
0

K
0

J
1

K
1

J
16

K
16

J
2

K
2

sh
ift

sh
ift

sh
ift

sh
ift

PC2
K

1

PC2
K

2

PC2
K

16

PC1
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Key Schedule

PC1 �– just a simple 
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i 
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on round)
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K

J
0

K
0

J
1

K
1

J
16

K
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J
2

K
2

sh
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sh
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sh
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1
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K

2
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K
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Key Schedule

PC1 �– just a simple 
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i 
shifted 

either 1 or 2 bits (depending 
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
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K
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58Pfleeger, Security in Computing, ch. 2

DES Decryption

Same as encryption, but done in reverse
�– key schedules, etc.
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Strength of DES

Strong in 70s.  Very weak today.
�– 56-bit keys
�– exhaustive search  average 255 attempts

DES crackers
�– 1977 - $20,000,000 
�– 1998 - $150,000
�– 2004 �– ?
�– Now ???
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Multiple Encryption with DES

how about doing DES twice?
�– probably not more secure than doing DES once

Merkle and Hellman paper

3DES
�– usually use two keys.  (but 3 keys also common)
�– effective key strength of 112 bits
�– break through exhaustive search:

if we can do 109 tries per second, on average
�– 56-bit keys  800 days
�– 112-bit keys  6 * 1019 years 
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Triple DES Operation: Typical Case

for each block:
�– encrypt with key 1
�– decrypt with key 2
�– encrypt with key 1
�– i.e. C = E

K1
(D

K2
(E

K1
(P)))

Bonus:  interoperates with DES
�– E

K1
(D

K1
(E

K1
(P))) = E

K1
(P)

Can also use 3DES with 3 keys
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Modes of Operation

Not in the textbook (but useful.  used in many contexts.)
Suppose that we have a message longer than 64 bits.
How do we use a 64-bit block cipher to encrypt it?
Modes of operation:
�– Electronic Code Book Mode (ECB)
�– Cipher Block Chaining Mode (CBC)
�– Ouput Feedback Mode (OFB)
�– Cipher Feedback Mode (CFB)
�– Counter Mode (CTR)
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Electronic Codebook Mode (ECB)

chop the plaintext into 64 bit blocks
encrypt each block separately
pros, cons?
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Electronic Codebook Mode (ECB)

simple

encrypt in any order

encrypt in parallel

example (database):
�– database stored in 

encrypted form
�– can change a single 

record without having to 
re-encrypt the other 
records

no error propagation

Pros Cons
plaintext block always 
encrypts to the same 
ciphertext block
�– could theoretically create a 

codebook of plaintext  
ciphertext pairs

patterns aren't hidden
�– tcp headers, mail headers, 

etc., long strings of 0's.

insertion attacks

replay attacks
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Cipher Block Chaining Mode (CBC)

The plaintext of block i is XOR'ed with the 
ciphertext of block i-1 before it is encrypted
Decryption is just the opposite

C i=Ek P i C i 1 P i=C i 1 D k C i
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CBC Encryption

The plaintext of 
block i is XOR'ed 
with the 
ciphertext of 
block i-1 before it 
is encrypted

so:
C i=Ek Pi C i 1

P
i-1

C
i-1

E
k

P
i

C
i

E
k

P
i+1

C
i+1

E
k
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CBC Decryption

The ciphertext of 
block i is decrypted 
and then XOR'ed 
with the ciphertext 
of block i-1

so:

P
i-1

C
i-1

D
k

P
i

C
i

D
k

P
i+1

C
i+1

D
k

P i=C i 1 D k C i
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CBC:  Why it works

C i=Ek P i C i 1 P i=C i 1 D k C i

...=C i 1 P i C i 1

...=P i

Encryption Decryption
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Initialization Vector

To form the ciphertext of block i
�– XOR the plaintext of block i with the ciphertext of 

block i-1.

What do we do with the 1st block?

70Pfleeger, Security in Computing, ch. 2

Initialization Vector

To form the ciphertext of block i
�– XOR the plaintext of block i with the ciphertext of 

block i-1.

What do we do with the 1st block?
�– use block of random data known to both the sender 

and receiver
�– called initialization vector (IV)
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CBC:  The Point

Make two identical plaintext blocks encrypt to 
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are 
also the same, we're in trouble
what if the entire message is the same?
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CBC:  The Point

Make two identical plaintext blocks encrypt to 
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are 
also the same, we're in trouble
what if the entire message is the same?
�– the entire ciphertext will be the same

fix?
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CBC:  The Point

Make two identical plaintext blocks encrypt to 
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are 
also the same, we're in trouble
what if the entire message is the same?
�– the entire ciphertext will be the same

fix?
�– use different IVs
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CBC:  Error Propagation

What happens if there is an error in block i?
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CBC:  Error Propagation

What happens if there is an error in block i?
�– Error affects block i and block i+1?

Why does it only affect block i and i+1 and 
nothing later?
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CBC Error Propagation

C i
1block i is flawed: so  

         
becomesC i

C i 1 Dk C i
1 =P i

1



77Pfleeger, Security in Computing, ch. 2

CBC Error Propagation

C i
1block i is flawed: so  

         
becomesC i

block i+1 arrives

C i 1 Dk C i
1 =P i

1

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1
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CBC Error Propagation

C i
1block i is flawed: so  

         
becomesC i

block i+1 arrives

garbage again

C i 1 Dk C i
1 =P i

1

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1
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CBC Error Propagation

C i
1block i is flawed: so  

         
becomesC i

C i 1 Dk C i
1 =P i

1

block i+1 arrives

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1

block i+2 arrives

C i 1 Dk C i 2 =C i 1 P i 2 C i 1=P i 2

OK
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CBC Security Problems

Attacker can still
�– add blocks to the end
�– modify particular bits in block i to affect plaintext in 

block i+1
Point of CBC is to hide patterns
�– but birthday paradox says that even with CBC, duplicates 

will eventually happen  2blockSize/2 blocks
�– for 64 bit blocks  32 gigabytes
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CBC Security Problems

Attacker can still
�– add blocks to the end
�– modify particular bits in block i to affect plaintext in 

block i+1
Point of CBC is to hide patterns
�– but birthday paradox says that even with CBC, duplicates 

will eventually happen  2blockSize/2 blocks
�– for 64 bit blocks  32 gigabytes

232 blocks 64bits/ block
8bits /byte 1024bits /Kbit 1024Kbits /Mbit 1024Mbits /Gbit

=32GBytes
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Problem

Suppose that we're doing telnet and we'd like to 
use CBC mode?
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Problem

Suppose that we're doing telnet and we'd like to 
use CBC mode?
Blocks are 64 bits
1)We'd have either:

wait until we've typed several characters OR
pad each so that we have a full block

2) We'd have to transmit 64-bits of ciphertext for every 
8 bits of plaintext
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Cipher Feedback Mode (CFB)

Stream ciphers �– can encrypt small amounts of 
plaintext

Block ciphers �– have to encrypt an entire block's 
worth of data

CFB Idea:  implement a block cipher as a type of 
stream cipher
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An Idea

Take your name
Encrypt it with DES  looks like random garbage
Can take the garbage, and encrypt that too
�– Looks like more random garbage

The point:
�– Can use garbage as a key stream
�– Reproduceable
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Self-Synchronizing Stream Ciphers

Recall how stream ciphers work
Self-synchronizing stream ciphers:
�– each bit in the keystream is a function of n previous 

bits of the ciphertext
keystream generator

P
i

K
i

C
i

�“self-synchronizing�” because after 
receiver's key generator has 
received n bits of text, it is 
synchronized with the sender's 
keystream generator
military: �“ciphertext auto key (CTAK)�”
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CFB:  How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of 
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i
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CFB:  How it works
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CFB Decryption

Recall:  with stream ciphers
�– decrypt by XOR'ing the keystream with ciphertext

CFB decryption:
�– receiver starts with the same IV
�– encrypt IV
�– select left-most k bits
�– XOR with ciphertext to recover plaintext
�– feed k bits of ciphertext back into queue
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CFB Decryption

receiver starts with same IV
encrypt IV
select left-most k bits
XOR with ciphertext to 
recover plaintext
feed k bits of ciphertext 
back into queue

...

encryptK

take k bits
(k

i
)

C
i

P
i

throw away 64-k bits
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CFB:  Additional Notes

When we take k bits, it's called k-bit CFB
If k is the block size

C i=Pi E K C i 1

P i=C i E K C i 1
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CFB:  Additional Notes

When we take k bits, it's called k-bit CFB
If k is the block size

C i=Pi E K C i 1

P i=C i E K C i 1

Really E
K 

not D
K
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CFB Errors

Plaintext error:
�– affects all ciphertext
�– but fixes itself in decryption

Ciphertext error:
�– causes a single error in corresponding plaintext
�– enters the feedback register

causing all ciphertext to be garbled until it leaves the queue
�– then everything is fine

Attacker can add to the end
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Synchronous Stream Ciphers

Recall: Self-synchronizing stream ciphers
�– keystream generated by feeding back previous 

ciphertext

Synchronous stream ciphers:
�– keystream totally independent of:

previous plaintext
previous ciphertext

�– why bother?
can pre-compute the keystream
no error propagation
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Synchronous Stream Ciphers

Feedback comes from the 
keystream itself

K
i

P
i

keystream generator

C
i
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Output Feedback Mode

Idea:  run a block cipher as a 
synchronous stream cipher
Encryption

...

encrypt

C
i

P
i

C i=Pi S i
S i=EK S i 1

Decryption:
P i=C i S i
S i=EK S i 1

Update internal state

IV should be unique, but doesn't have to be secret



101Pfleeger, Security in Computing, ch. 2

OFB Errors

Error propagation
�– no error extension
�– single bit error in ciphertext causes single bit error in 

corresponding plaintext
What happens if the sender and receiver lose 
sync?
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OFB Errors

Error propagation
�– no error extension
�– single bit error in ciphertext causes single bit error in 

corresponding plaintext
What happens if the sender and receiver lose 
sync?
�– disaster
�– must be able to:

detect sync errors
automatically recover with a new IV to regain sync

103Pfleeger, Security in Computing, ch. 2

OFB Security Problems

Don't want keystream to repeat
Should chose the feedback size to be the same as 
the block size
�– e.g. so if you're using a 64-bit block size, you should 

use 64-bit OFB
�– the smaller the block size, the more often the 

keystream will repeat
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Counter Mode (CTR)

Use sequence numbes as input to the algorithm
Just like OFB, except:
�– you don't feed the output back into the shift register
�– just add a counter to the register

It doesn't matter
�– what the starting counter value is
�– what the increment amount is

Only requirement: sender and receiver must agree
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Counter Mode (cont'd)

Synchronization problems:  same as OFB
Why use it?
�– compute keystream in parallel
�– precompute the keystream
�– random access
�– simple
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Summary
Block ciphers encrypt chunks of plaintext at a 
time all with the same key
Stream ciphers encrypt symbol i of the plaintext 
by combining it with symbol i of the key
With very simple primitive ops (substitutions, 
permutations, shifts, XORs) DES was strong
DES insecure by today's standards (56-bit keys 
too short).  3DES strong but slow.
CBC, OFB, CFB, CTR  hide patterns
�– Additionally OFB, CFB, CTR fast
�– Get the best of both stream and block ciphers 


