
1Pfleeger, Security in Computing, ch. 2

Security in Computing

Chapter 2

Elementary Cryptography (part 3)

2Pfleeger, Security in Computing, ch. 2

Chapter Outline

2.1 Terminology and Background
2.2 Substitution Ciphers
2.3 Transpositions (Permutations)
2.4 Making �“Good�” Encryption Algorithms
2.5 The Data Encryption Standard (DES)
2.6 The AES Algorithm
2.7 Public Key Encryption
2.8 Uses of Encryption
2.9 Summary

3Pfleeger, Security in Computing, ch. 2

Characteristics of �“Good�” Ciphers

Shannon Communication Theory of Secrecy
Systems (1949), pg. 15
�– Amount of secrecy should be proportional to value
�– Key needs to be transmitted/memorized should be

as short as possible
�– Encryption/decryption should be as simple as possible
�– Errors shouldn't propagate
�– Size of the ciphertext should be the same as plaintext

4Pfleeger, Security in Computing, ch. 2

Trustworthy Encryption Properties

Encryption systems should:

�– be based on sound mathematics

�– be analyzed by experts

�– stand the test of time

5Pfleeger, Security in Computing, ch. 2

Stream and Block Ciphers

stream ciphers
�– encrypt one symbol (bit, byte, or word) at a time
�– encrypt the ith symbol with the ith part of the keystream

block ciphers encrypt larger blocks of plaintext
�– block size usually 64 bits or more

�– encrypt all blocks with the same key

6Pfleeger, Security in Computing, ch. 2

Block Ciphers We've Done

Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p

7Pfleeger, Security in Computing, ch. 2

Block Ciphers We've Done
Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p

Not stream ciphers?

8Pfleeger, Security in Computing, ch. 2

Block Ciphers We've Done
Cipher Block Size

p
simple substitution 1 character
homophonic substitution 1 character
playfair 2 characters

transposition with period p

Not stream ciphers?
�– No.
�– Stream ciphers use the ith part of the keystream to

encrypt symbol i.
�– These use the same key for all plaintext chars.

9Pfleeger, Security in Computing, ch. 2

Stream Ciphers We've Done

Cipher Period
p
26**r

Vernam none

Vigenere with period p
Rotor machine with r rotors

10Pfleeger, Security in Computing, ch. 2

Stream vs. Block Ciphers

Stream Ciphers Block Ciphers
Advantages fast high diffusion

 low error propagation more immunity to insertion
Disadvantages low diffusion slower

 vulnerable to insertions and modifications error propagation

11Pfleeger, Security in Computing, ch. 2

Question

When we do a simple substitution cipher
�– We map a character in P to a character in C

Question:
�– Is it possible for two different chars in P to map to the

same character in C?

12Pfleeger, Security in Computing, ch. 2

Question

When we do a simple substitution cipher
�– We map a character in P to a character in C

Question:
�– Is it possible for two different chars in P to map to the

same character in C?

Answer:
�– no. otherwise, how would you decrypt? example:

P A B C D E F G H I J K L M N ...
C J E F K M E E P M D S T L A ...

13Pfleeger, Security in Computing, ch. 2

and now ...

same discussion sounding like you ate a math book

14Pfleeger, Security in Computing, ch. 2

Math Review: Functions

Recall - A function is defined by two sets A, and
B, and a rule that maps the elements in A to
elements in B
�– A is called the domain
�– B is called the co-domain

Notation �– f: A B
A function is one-to-one (1 1) if for every
element in B, there is at most one element in A

A B

15Pfleeger, Security in Computing, ch. 2

Cryptographic Functions

The cryptographic algorithms that we've been
discussing (except maybe the random
homophonic ciphers) are functions.
Plaintext alphabet is P
Ciphertext alphabet is C
The cryptographic algorithm maps the characters
in P to C
f: P C

16Pfleeger, Security in Computing, ch. 2

Cryptographic functions are 1 1

Question:
�– Why must cryptographic functions be 1 1?

17Pfleeger, Security in Computing, ch. 2

Cryptographic functions are 1 1

Question:
�– Why must cryptographic functions be 1 1?

Answer:
�– If they weren't 1 1 this would mean that there are

elements in C for which there are more than one
element in P.

�– How would we do decryption?
�– Example:

P A B C D E F G H I J K L M N ...
C J E F K M E E P M D S T L A ...

18Pfleeger, Security in Computing, ch. 2

A simple function

y = x2

A B

what's A and B?
is it practical to specify the function like this?

A 1 2 3 4 5 6 7 ...
B 1 4 9 16 25 36 49 ...

19Pfleeger, Security in Computing, ch. 2

more complex crypto

for y=x2 it's easier to define function without
drawing the map

we'd like the same thing for crypto function

20Pfleeger, Security in Computing, ch. 2

Block Ciphers
Plain substitution ciphers that we've discussed
�– example:

A K
B D
C Q
...

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001 0x81A7 C961
0x0000 0002 0xB132 8DC5
...

21Pfleeger, Security in Computing, ch. 2

Block Ciphers
Plain substitution ciphers that we've discussed
�– example: A K, B D, C Q, ...
�– how many bits are required to specify the mapping?

22Pfleeger, Security in Computing, ch. 2

Block Ciphers

Plain substitution ciphers that we've discussed
�– example: A K, B D, C Q, ...
�– how many bits are required to specify the mapping?

P C
A K
B D
C Q
D M
E S
F Z
G H
H O
... ...

26
 c

ha
ra

ct
er

s
Answer:
�– There are 26 characters
�– It takes 5 bits per character
�– 26*5 = 130 bits

23Pfleeger, Security in Computing, ch. 2

Bits to encode 64-bit block ciphers

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001 0x81A7 C961
0x0000 0002 0xB132 8DC5
...

How many bits would it take to encode this?

24Pfleeger, Security in Computing, ch. 2

Bits to encode 64-bit block ciphers

ciphers that operate on 64-bit blocks
�– example:

0x0000 0001 0x81A7 C961
0x0000 0002 0xB132 8DC5
...

How many bits would it take to encode this?
�– If we made a table, there would be:

264 entries
each entry would be 64 bits long
264 * 26 = 270 bits

25Pfleeger, Security in Computing, ch. 2

Bits to encode 64-bit block ciphers

So for larger block sizes, we have to do something
different

Goal:
�– generate a 1 1 mapping
�– make it look as random as possible
�– don't store all possible input/output pairs

26Pfleeger, Security in Computing, ch. 2

Chapter Outline

2.1 Terminology and Background
2.2 Substitution Ciphers
2.3 Transpositions (Permutations)
2.4 Making �“Good�” Encryption Algorithms
2.5 The Data Encryption Standard (DES)
2.6 The AES Algorithm
2.7 Public Key Encryption
2.8 Uses of Encryption
2.9 Summary

27Pfleeger, Security in Computing, ch. 2

Background

Early 70s non-military
crypto research unfocused

National Bureau of
Standards (now NIST)
wanted algorithm which:
�– is secure
�– open
�– efficient
�– useful in diverse

applications

IBM Lucifer algorithm
submitted
DES based on Lucifer
controversies over:
�– reduced key size
�– design (of S-boxes)

28Pfleeger, Security in Computing, ch. 2

Description of DES

block cipher. 64-bit blocks

same algorithm used for
encryption, decryption

56-bit keys
�– represented as 64-bit

number
�– but every 8th bit is for

parity only usually
ignored

symmetric: receiver uses
same key to decrypt

uses basic techniques of
encryption. provides
�– confusion (substitutions)
�– diffusion (permutations)

same process 16
times/block

uses standard arithmetic and
logical operators
�– efficient hardware

implementations

29Pfleeger, Security in Computing, ch. 2

But first ...

DES is very complicated
Simplified DES first.
�– educational protocol
�– similar to DES
�– works with much smaller units
�– easier to see

30Pfleeger, Security in Computing, ch. 2

S-DES

S-DESS-DES
8 bit plaintext block

10 bit key

8 bit ciphertext
block

31Pfleeger, Security in Computing, ch. 2

S-DES overview

for each block, permutations and substitutions
5 functions:
1) initial permutation (IP)
2) a complex function f

K

consists of permutations and substitutions
key is applied

3) special permutation: switch the left and right sides
4) f

K
again

5) inverse of initial permutation (IP-1)
32Pfleeger, Security in Computing, ch. 2

S-DES: more detailed look

S-DESS-DES
8 bit plaintext block

10 bit key

8 bit ciphertext
block

IP-1IP-1f
K

f
KSWSWf

K
f

KIPIP

33Pfleeger, Security in Computing, ch. 2

S-DES initial permutation

p
2
 p

6
 p

3
 p

1
 p

4
 p

8
p

5
p

7

example:
1 0 1 0 1 1 1 0

becomes:

0 1 1 1 0 0 1 1

34Pfleeger, Security in Computing, ch. 2

S-DES initial permutation

p
2
 p

6
 p

3
 p

1
 p

4
 p

8
p

5
p

7

example:
1 0 1 0 1 1 1 0

becomes:

0 1 1 1 0 0 1 1

35Pfleeger, Security in Computing, ch. 2

S-DES: function f
K

f k L , R = L F R ,SK ,R

left 4 bits

right 4 bits

subkeyXOR

36Pfleeger, Security in Computing, ch. 2

key choice

37Pfleeger, Security in Computing, ch. 2

Back to Real World

now back to real DES ...

for more details on S-DES, check out supplement to
Stallings' Cryptography and Network Security

http://williamstallings.com/Crypto/Crypto4e.html

38Pfleeger, Security in Computing, ch. 2

Back to Real World

now back to real DES ...

for more details on S-DES, check out supplement to
Stallings' Cryptography and Network Security

http://williamstallings.com/Crypto/Crypto4e.html

39Pfleeger, Security in Computing, ch. 2

Description of DES
Break up plaintext into 64-bit blocks

Each block goes through 16 rounds
�– B

i
 = block after iteration i

�– L
i
 = LHS of block after iteration i

�– R
i
= RHS of block after iteration i

For each block of plaintext:
�– initial permutation
�– for (i=1 to 16)

L
i
 = R

i-1

�– final permutation
Ri=Li 1 f Ri 1 , k i

L
i-1

R
i-1

L
i

R
i

f K
i

40Pfleeger, Security in Computing, ch. 2

Description of DES
Break up plaintext into 64-bit blocks

Each block goes through 16 rounds
�– B

i
 = block after iteration i

�– L
i
 = LHS of block after iteration i

�– R
i
= RHS of block after iteration i

For each block of plaintext:
�– initial permutation
�– for (i=1 to 16)

L
i
 = R

i-1

�– final permutation
Ri=Li 1 f Ri 1 , k i

L
i-1

R
i-1

L
i

R
i

f K
i

combining LHS-RHS:
Feistel Structure

41Pfleeger, Security in Computing, ch. 2

Initial Permutation

Done before the 16 rounds

Read: �“put bit 58 into the 1st position, put 50 into the 2nd
position ...�”

Reversed by Inverse Initial Permutation (after round 16)

Problem with this?

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

42Pfleeger, Security in Computing, ch. 2

Initial Permutation

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

Done before the 16 rounds

Read: �“put bit 58 into the 1st position, put 50 into the 2nd
position ...�”

Reversed by Inverse Initial Permutation (after round 16)

Problem with this?
�– Not really, but it doesn't add to the security

43Pfleeger, Security in Computing, ch. 2

So What's f ?
L

i-1
R

i-1

L
i

R
i

f K
i

44Pfleeger, Security in Computing, ch. 2

L
i-1

R
i-1

L
i R

i

K
i

Expansion Permutation

S-box

P-box

So What's f ?

f

45Pfleeger, Security in Computing, ch. 2

Expansion Permutation

expand R
i
: 32 48 bits

all bits used at least
once. some twice.
R

i
 becomes same

length as key for XOR
avalanche effect
�– few bits of plaintext

affects many bits of
ciphertext

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S

46Pfleeger, Security in Computing, ch. 2

Expansion Permutation

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S

47Pfleeger, Security in Computing, ch. 2

Expansion Permutation

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

L
i-1 R

i-1

L
i R

i

K
i

Exp. Perm.

P

S

48Pfleeger, Security in Computing, ch. 2

S-boxes

take 48-bits from result of
�– expansion permutation K

i

break into 8 6-bit blocks
�– block 1 box S

1

�– block 2 box S
2

�– etc.

L
i-1

R
i-1

L
i

R
i

K
i

E

P

S

49Pfleeger, Security in Computing, ch. 2

48 bits

32 bits

S2 S3 S4 S5 S6S1 S7 S8

S boxes

Each box defines a substitution
�– 6-bit input
�– 4-bit output

50Pfleeger, Security in Computing, ch. 2

Example: S box 1

bit 1 and 6 define the row.
bit 2-5 define col.
example: 010011

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

51Pfleeger, Security in Computing, ch. 2

Example: S box 1

bit 1 and 6 define the row.
bit 2-5 define col.
example: 010011
�– bit 1,6 = 01 row 1
�– bit 2,3,4,5 = 1001 col 9
�– output = 6, i.e. 0110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

52Pfleeger, Security in Computing, ch. 2

Avalanche Effect

good ciphers:
�– change few plaintext bits change many in

ciphertext

pronounced in DES
�– big changes to block after only a few rounds

53Pfleeger, Security in Computing, ch. 2

Key Schedule

Key is 56 bits (64 �– 8 parity bits)
Goes through a permutation before round 1
Then for each round:
�– divide into two halves
�– circular shift of each half (shift 1 or two bits

depending on round)
�– select 48 of the 56 bits

54Pfleeger, Security in Computing, ch. 2

Key Schedule

PC1 �– just a simple
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i
shifted

either 1 or 2 bits (depending
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
0

K
0

J
1

K
1

J
16

K
16

J
2

K
2

sh
ift

sh
ift

sh
ift

sh
ift

PC2
K

1

PC2
K

2

PC2
K

16

PC1

55Pfleeger, Security in Computing, ch. 2

Key Schedule

PC1 �– just a simple
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i
shifted

either 1 or 2 bits (depending
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
0

K
0

J
1

K
1

J
16

K
16

J
2

K
2

sh
ift

sh
ift

sh
ift

sh
ift

PC2
K

1

PC2
K

2

PC2
K

16

PC1

56Pfleeger, Security in Computing, ch. 2

Key Schedule

PC1 �– just a simple
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i
shifted

either 1 or 2 bits (depending
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
0

K
0

J
1

K
1

J
16

K
16

J
2

K
2

sh
ift

sh
ift

sh
ift

sh
ift

PC2
K

1

PC2
K

2

PC2
K

16

PC1

57Pfleeger, Security in Computing, ch. 2

Key Schedule

PC1 �– just a simple
permutation

key split in half
�– each half 28 bits

at round i, J
i
 and K

i
shifted

either 1 or 2 bits (depending
on round)

result of shift fed to PC2
�– bits are permuted
�– 48 of the 56 bits chosen

K

J
0

K
0

J
1

K
1

J
16

K
16

J
2

K
2

sh
ift

sh
ift

sh
ift

sh
ift

PC2
K

1

PC2
K

2

PC2
K

16

PC1

58Pfleeger, Security in Computing, ch. 2

DES Decryption

Same as encryption, but done in reverse
�– key schedules, etc.

59Pfleeger, Security in Computing, ch. 2

Strength of DES

Strong in 70s. Very weak today.
�– 56-bit keys
�– exhaustive search average 255 attempts

DES crackers
�– 1977 - $20,000,000
�– 1998 - $150,000
�– 2004 �– ?
�– Now ???

60Pfleeger, Security in Computing, ch. 2

Multiple Encryption with DES

how about doing DES twice?
�– probably not more secure than doing DES once

Merkle and Hellman paper

3DES
�– usually use two keys. (but 3 keys also common)
�– effective key strength of 112 bits
�– break through exhaustive search:

if we can do 109 tries per second, on average
�– 56-bit keys 800 days
�– 112-bit keys 6 * 1019 years

61Pfleeger, Security in Computing, ch. 2

Triple DES Operation: Typical Case

for each block:
�– encrypt with key 1
�– decrypt with key 2
�– encrypt with key 1
�– i.e. C = E

K1
(D

K2
(E

K1
(P)))

Bonus: interoperates with DES
�– E

K1
(D

K1
(E

K1
(P))) = E

K1
(P)

Can also use 3DES with 3 keys
62Pfleeger, Security in Computing, ch. 2

Modes of Operation

Not in the textbook (but useful. used in many contexts.)
Suppose that we have a message longer than 64 bits.
How do we use a 64-bit block cipher to encrypt it?
Modes of operation:
�– Electronic Code Book Mode (ECB)
�– Cipher Block Chaining Mode (CBC)
�– Ouput Feedback Mode (OFB)
�– Cipher Feedback Mode (CFB)
�– Counter Mode (CTR)

63Pfleeger, Security in Computing, ch. 2

Electronic Codebook Mode (ECB)

chop the plaintext into 64 bit blocks
encrypt each block separately
pros, cons?

64Pfleeger, Security in Computing, ch. 2

Electronic Codebook Mode (ECB)

simple

encrypt in any order

encrypt in parallel

example (database):
�– database stored in

encrypted form
�– can change a single

record without having to
re-encrypt the other
records

no error propagation

Pros Cons
plaintext block always
encrypts to the same
ciphertext block
�– could theoretically create a

codebook of plaintext
ciphertext pairs

patterns aren't hidden
�– tcp headers, mail headers,

etc., long strings of 0's.

insertion attacks

replay attacks

65Pfleeger, Security in Computing, ch. 2

Cipher Block Chaining Mode (CBC)

The plaintext of block i is XOR'ed with the
ciphertext of block i-1 before it is encrypted
Decryption is just the opposite

C i=Ek P i C i 1 P i=C i 1 D k C i

66Pfleeger, Security in Computing, ch. 2

CBC Encryption

The plaintext of
block i is XOR'ed
with the
ciphertext of
block i-1 before it
is encrypted

so:
C i=Ek Pi C i 1

P
i-1

C
i-1

E
k

P
i

C
i

E
k

P
i+1

C
i+1

E
k

67Pfleeger, Security in Computing, ch. 2

CBC Decryption

The ciphertext of
block i is decrypted
and then XOR'ed
with the ciphertext
of block i-1

so:

P
i-1

C
i-1

D
k

P
i

C
i

D
k

P
i+1

C
i+1

D
k

P i=C i 1 D k C i

68Pfleeger, Security in Computing, ch. 2

CBC: Why it works

C i=Ek P i C i 1 P i=C i 1 D k C i

...=C i 1 P i C i 1

...=P i

Encryption Decryption

69Pfleeger, Security in Computing, ch. 2

Initialization Vector

To form the ciphertext of block i
�– XOR the plaintext of block i with the ciphertext of

block i-1.

What do we do with the 1st block?

70Pfleeger, Security in Computing, ch. 2

Initialization Vector

To form the ciphertext of block i
�– XOR the plaintext of block i with the ciphertext of

block i-1.

What do we do with the 1st block?
�– use block of random data known to both the sender

and receiver
�– called initialization vector (IV)

71Pfleeger, Security in Computing, ch. 2

CBC: The Point

Make two identical plaintext blocks encrypt to
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are
also the same, we're in trouble
what if the entire message is the same?

72Pfleeger, Security in Computing, ch. 2

CBC: The Point

Make two identical plaintext blocks encrypt to
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are
also the same, we're in trouble
what if the entire message is the same?
�– the entire ciphertext will be the same

fix?

73Pfleeger, Security in Computing, ch. 2

CBC: The Point

Make two identical plaintext blocks encrypt to
two different ciphertext blocks
but if all of the preceeding ciphertext blocks are
also the same, we're in trouble
what if the entire message is the same?
�– the entire ciphertext will be the same

fix?
�– use different IVs

74Pfleeger, Security in Computing, ch. 2

CBC: Error Propagation

What happens if there is an error in block i?

75Pfleeger, Security in Computing, ch. 2

CBC: Error Propagation

What happens if there is an error in block i?
�– Error affects block i and block i+1?

Why does it only affect block i and i+1 and
nothing later?

76Pfleeger, Security in Computing, ch. 2

CBC Error Propagation

C i
1block i is flawed: so

becomesC i

C i 1 Dk C i
1 =P i

1

77Pfleeger, Security in Computing, ch. 2

CBC Error Propagation

C i
1block i is flawed: so

becomesC i

block i+1 arrives

C i 1 Dk C i
1 =P i

1

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1

78Pfleeger, Security in Computing, ch. 2

CBC Error Propagation

C i
1block i is flawed: so

becomesC i

block i+1 arrives

garbage again

C i 1 Dk C i
1 =P i

1

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1

79Pfleeger, Security in Computing, ch. 2

CBC Error Propagation

C i
1block i is flawed: so

becomesC i

C i 1 Dk C i
1 =P i

1

block i+1 arrives

C i
1 Dk C i 1 =C i

1 Pi 1 C i=P i 1
1

block i+2 arrives

C i 1 Dk C i 2 =C i 1 P i 2 C i 1=P i 2

OK

80Pfleeger, Security in Computing, ch. 2

CBC Security Problems

Attacker can still
�– add blocks to the end
�– modify particular bits in block i to affect plaintext in

block i+1
Point of CBC is to hide patterns
�– but birthday paradox says that even with CBC, duplicates

will eventually happen 2blockSize/2 blocks
�– for 64 bit blocks 32 gigabytes

81Pfleeger, Security in Computing, ch. 2

CBC Security Problems

Attacker can still
�– add blocks to the end
�– modify particular bits in block i to affect plaintext in

block i+1
Point of CBC is to hide patterns
�– but birthday paradox says that even with CBC, duplicates

will eventually happen 2blockSize/2 blocks
�– for 64 bit blocks 32 gigabytes

232 blocks 64bits/ block
8bits /byte 1024bits /Kbit 1024Kbits /Mbit 1024Mbits /Gbit

=32GBytes

82Pfleeger, Security in Computing, ch. 2

Problem

Suppose that we're doing telnet and we'd like to
use CBC mode?

83Pfleeger, Security in Computing, ch. 2

Problem

Suppose that we're doing telnet and we'd like to
use CBC mode?
Blocks are 64 bits
1)We'd have either:

wait until we've typed several characters OR
pad each so that we have a full block

2) We'd have to transmit 64-bits of ciphertext for every
8 bits of plaintext

84Pfleeger, Security in Computing, ch. 2

Cipher Feedback Mode (CFB)

Stream ciphers �– can encrypt small amounts of
plaintext

Block ciphers �– have to encrypt an entire block's
worth of data

CFB Idea: implement a block cipher as a type of
stream cipher

85Pfleeger, Security in Computing, ch. 2

An Idea

Take your name
Encrypt it with DES looks like random garbage
Can take the garbage, and encrypt that too
�– Looks like more random garbage

The point:
�– Can use garbage as a key stream
�– Reproduceable

86Pfleeger, Security in Computing, ch. 2

Self-Synchronizing Stream Ciphers

Recall how stream ciphers work
Self-synchronizing stream ciphers:
�– each bit in the keystream is a function of n previous

bits of the ciphertext
keystream generator

P
i

K
i

C
i

�“self-synchronizing�” because after
receiver's key generator has
received n bits of text, it is
synchronized with the sender's
keystream generator
military: �“ciphertext auto key (CTAK)�”

87Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

88Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

89Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

90Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

91Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

92Pfleeger, Security in Computing, ch. 2

CFB: How it works
1) Fill up a block sized IV
2) Encrypt it
3) Take the left-most k bits

throw away the rest
left bits are next bits of
keystream

4) XOR with plaintext
5) Result is ciphertext
6) Feed it back into queue

...

encryptK

take k bits
(k

i
)

throw away 64-k bits

P
i

C
i

93Pfleeger, Security in Computing, ch. 2

CFB Decryption

Recall: with stream ciphers
�– decrypt by XOR'ing the keystream with ciphertext

CFB decryption:
�– receiver starts with the same IV
�– encrypt IV
�– select left-most k bits
�– XOR with ciphertext to recover plaintext
�– feed k bits of ciphertext back into queue

94Pfleeger, Security in Computing, ch. 2

CFB Decryption

receiver starts with same IV
encrypt IV
select left-most k bits
XOR with ciphertext to
recover plaintext
feed k bits of ciphertext
back into queue

...

encryptK

take k bits
(k

i
)

C
i

P
i

throw away 64-k bits

95Pfleeger, Security in Computing, ch. 2

CFB: Additional Notes

When we take k bits, it's called k-bit CFB
If k is the block size

C i=Pi E K C i 1

P i=C i E K C i 1

96Pfleeger, Security in Computing, ch. 2

CFB: Additional Notes

When we take k bits, it's called k-bit CFB
If k is the block size

C i=Pi E K C i 1

P i=C i E K C i 1

Really E
K

not D
K

97Pfleeger, Security in Computing, ch. 2

CFB Errors

Plaintext error:
�– affects all ciphertext
�– but fixes itself in decryption

Ciphertext error:
�– causes a single error in corresponding plaintext
�– enters the feedback register

causing all ciphertext to be garbled until it leaves the queue
�– then everything is fine

Attacker can add to the end
98Pfleeger, Security in Computing, ch. 2

Synchronous Stream Ciphers

Recall: Self-synchronizing stream ciphers
�– keystream generated by feeding back previous

ciphertext

Synchronous stream ciphers:
�– keystream totally independent of:

previous plaintext
previous ciphertext

�– why bother?
can pre-compute the keystream
no error propagation

99Pfleeger, Security in Computing, ch. 2

Synchronous Stream Ciphers

Feedback comes from the
keystream itself

K
i

P
i

keystream generator

C
i

100Pfleeger, Security in Computing, ch. 2

Output Feedback Mode

Idea: run a block cipher as a
synchronous stream cipher
Encryption

...

encrypt

C
i

P
i

C i=Pi S i
S i=EK S i 1

Decryption:
P i=C i S i
S i=EK S i 1

Update internal state

IV should be unique, but doesn't have to be secret

101Pfleeger, Security in Computing, ch. 2

OFB Errors

Error propagation
�– no error extension
�– single bit error in ciphertext causes single bit error in

corresponding plaintext
What happens if the sender and receiver lose
sync?

102Pfleeger, Security in Computing, ch. 2

OFB Errors

Error propagation
�– no error extension
�– single bit error in ciphertext causes single bit error in

corresponding plaintext
What happens if the sender and receiver lose
sync?
�– disaster
�– must be able to:

detect sync errors
automatically recover with a new IV to regain sync

103Pfleeger, Security in Computing, ch. 2

OFB Security Problems

Don't want keystream to repeat
Should chose the feedback size to be the same as
the block size
�– e.g. so if you're using a 64-bit block size, you should

use 64-bit OFB
�– the smaller the block size, the more often the

keystream will repeat

104Pfleeger, Security in Computing, ch. 2

Counter Mode (CTR)

Use sequence numbes as input to the algorithm
Just like OFB, except:
�– you don't feed the output back into the shift register
�– just add a counter to the register

It doesn't matter
�– what the starting counter value is
�– what the increment amount is

Only requirement: sender and receiver must agree

105Pfleeger, Security in Computing, ch. 2

Counter Mode (cont'd)

Synchronization problems: same as OFB
Why use it?
�– compute keystream in parallel
�– precompute the keystream
�– random access
�– simple

106Pfleeger, Security in Computing, ch. 2

Summary
Block ciphers encrypt chunks of plaintext at a
time all with the same key
Stream ciphers encrypt symbol i of the plaintext
by combining it with symbol i of the key
With very simple primitive ops (substitutions,
permutations, shifts, XORs) DES was strong
DES insecure by today's standards (56-bit keys
too short). 3DES strong but slow.
CBC, OFB, CFB, CTR hide patterns
�– Additionally OFB, CFB, CTR fast
�– Get the best of both stream and block ciphers

