Diyala University
College of Engineering
Computer & Software
Engineering Department

Fourth Year 2012/2013

Cryptography Algorithms

Chapter 2/Part4

PRESENTED BY
DR. ALl J. ABBOUD

Replacement of DES

= Examine in this lecture some of the most important symmetric
ciphers currently in use

o Triple DES
o Block cipher operation

a RC5
o RC4

= DES is vulnerable nowadays to a brute-force attack
= |tis replaced as a standard by AES

= There has been interest to provide another algorithm during the
transition to AES

= Also interest to preserve the existing investment in software and
hardware, increasing the security

s Solution: iterated version of DES

Double DES
Obvious solution: double DES

= Use two keys K1, K2 and encrypt the text using the two keys
C=Ex(Ex1(P))
= [o decrypt simply use DES decryption twice
P=Dy,(Dy,(C))
= The scheme involves now a key of 112 bits which should make it
much more secure than DES, at least in principle

Double DES

Multiple encryption K, Ko
Encryption
= Source: W_Stallings — K2 Ky

"Cryptography and network

security” (5th edition), Fig 6.1 C n X “ P
Decrypriom
(a) Double Encryption

K K> Kj
e > RG> S N s S
Emecryption
K; K- K,
Decryprbon

k) Triple Eneryption

Figure 6.1 Multiple Encryption

Security of Double DES

Question 1: Is double DES more than just DES?

2 Inother words, could there be a key K, such that E,,(E,(P))= Ex4(P)?
Answer: Double DES cannot be reduced to single DES (intuitively
clear, difficult to prove though)

Question 2: Is double DES more secure than DES?

2 Key is twice as long

2 Does this imply necessarily that all attacks must take significantly more
time than a DES attack?

Answer: Double DES can be broken with only twice the effort of
breaking DES with a brute-force attack

1 Meet-in-the-middle attack

Man in the Middle Attacks on the Double DES

= Due to Diffie, Hellman (1977)
= Main observation: if C=Ey,(Ex4(P)), then
Ex1(P)=Dio(C)=X
= Assume we have two pairs of plaintext-ciphertext (of only one byte
each!)
= Given a known pair (P,C) attack as follows:
2 Encrypt P for all 2°6 possible keys K,

2 Store the results in a table and sort the table by the values of X

1 Decrypt C using all possible 2°5 possible keys K,
» Foreach decryption check the result in the table
» In case of match, either we have the answer, or a false positive

» Test the two keys with the second pair of plaintext-ciphertext: if they match,
the correct keys were found

Man in the Middle Attacks on the Double DES

Short analysis:

2 For a given plaintext P, there are 25 possible ciphertext values that
could be produced by 2DES

2 2DES uses 112-hit key so that there 2'"2 possible keys

1 Thus, on average the number of different keys that give the same C for a
given P is 2112/264=248: thus, the attacker will have 2% “false alarms’

1 Having the second pair of plaintext-ciphertext the false alarm rate is
reduced to 248-64=2-16

Conclusion: 2DES is broken in 2°¢ steps with probability larger than
1-2-16
2 The effort is not much bigger than the 2*° required to break DES

Man in the Middle Attacks on the Double DES

Other consideratio
1 Storing atable wi

NS
th 2°¢ bytes is a major task

2 hytes = 65536 Th

1 Sorting 1tIs non-t
1 Stillthis Is enoug

Ivial In terms of complexty
1 to discard a double iteration algorthm: not necessariy

a feasible attack |

oday, but potentially dangerous

Tripple DES

Counter to the meet-in-the-middle attack: use three stages of encryption with
three different keys
C=Ey3(Exa(Ex4(P)))
o Drawback: keys is now 168 hits which makes it slower
o Alternative: 3DES with 2 keys: K3=K1
Another alternative: instead of three encryptions, use 2 encryptions and one
decryption
C=Ex1(Dxa(Exs(P)))
o Using decryption rater than encryption in the second stage yields no weakness

2 This is only a solution to remain compatible with the users of simple DES. Such
users should use K1=K2:

C=Ex1(Dk1(Exa(P)))=Exa(P)
There are no practical cryptoanalytical attacks on 3DES
o Brute-force attack is on the scale of 2112, i.e., more than 5x1032
o Differential cryptanalysis exceeds an effort of 1072

o Best attack (Lucks, 1998): 232 known plaintexts, 2113 steps, 2% single DES
encryptions, 2% bytes memory = not practical

gtliggesﬁun: given the current state of technology, 3DES should be used with
eys

Comparison

Factors AES JDES DES
Kev Length 128, 192, or 256 bits (k1,k2 and k3) 168 bits 56 bits
(k1 and k2 is same) 112bits
Cipher Type Symmetric block cipher | Symmetric block cipher Symmetric block cipher
[Block Size 128,102, or 256 bits 64bits 64 bits
[Developed 2000 1078 1077
Cryptanalysis resistance Strong against differential,] v ulnerable to differential, | Vulnerable to differential
truncated differential, Brute Force attacker could | and linear cryvpranalysis;
linear, interpolation and | be analvze plaint text using | weak substitution tables
square attacks differential cryptanalysis.
Security Considered secure one onlv weak which is Proven inadequate
Exit in DES.
Possible Kevs 2158 2152 gr 220 2 gy 2103 20
Possible ASCII printable character keys 9516, 9524 or 9531 0514 gr 052l 057

Time required to check all possible
kevs at 50 billion keys per second**

For a 128-bit key: 5x 102!

years

For a 112-bit kev: 800

Days

For a 56-bit kev: 400

Days

10

RC 4 and RC5 Algorithms
RC5. RC4

= Before going into AES: RC5, RC4

o RCS5: another symmetric cipher proposed while DES was under
replacement

o RC4: a special-purpose stream cipher

Variable key length / block size / number of rounds — RC5

Mixed operators: use of more than one arithmetic and/or Boolean operator
is advisable, especially if these operator are not distributive and
associative — RC5

2 Modular addition/subtraction, XOR

Data-dependent (and key-dependent) rotation — an alternative to S-boxes
— RC5

Key-dependent S-boxes — Blowfish

Lengthy key scheduling — generation of subkeys takes much longer than

encryption and decryption (brute-force attacks become much more
difficult) — Blowfish

Operation on full data (rather than one half as in Feistel) in each round —
Blowfish, RC5, AES

Varying non-linear functions — the encryption function varies from round to
round

11

RC5 Algorithm

Symmetric encryption algorithm developed by Rivest 1994; incorporated
into BSAFE, JSAFE, S/IMAIL (of RSA Data Security Inc.)

Characteristics of RC5 (see http://people.csail.mit.edu/rivest/Rivest-
rcorev.pdf)

2 Suitable for hardware and software: uses only common operations found on
microprocessors

o Fast: simple and word oriented

Adaptable to processors of different word lengths: the number of bits in the word
is the 15t parameter of RC5

Variable number of rounds: number of rounds is the 2" parameter
Variable-length key: key length is the 3™ parameter of RC5
Simple: easy to implement and analyze

Low memory requirement: suitable for smart cards or other devices with limited
memory

High security
o Data-dependent rotations

[I I R [

]

12

RC5 Algorithm

Parameters

2 wis the word size in bits = RC5 encrypts blocks of 2 words. Allowed values: 16,
32, 64

2 ris the number of rounds. Allowed values: 0,1,...,255

2 bis the number of 8-bit bytes in the secret key K. Allowed values: 0,1,...,255
A specific version of RCS is denoted RC5-w/r/b

2 The author advises fo use RC5-32/12/16 as the "nominal” version

2 That means: 64-bit plaintext/ciphertext blocks, 12 rounds, 128-bit key

Algorithm

d
d

Key expansion
Input manipulation

Details are on the following slides:

d
d
d
d

where addition and subtraction (+ and -) are modulo 2¥
bitwise XOR is @

x<<<y is the circular left-shift of x by y bits

x>>>Y is the circular right-shift of word x by y bits

13

RC5 Algorithm

RC5 encryption/decryption scheme

RC5-wirib — encryption

LE,=A+S[0]

RE,=B+S[1]

Fori=1tordo
LE:=((LE.2RE{)<<<RE.)+S[2i]
RE=((RE;{ZLE;)<<<LE;)+S[2i+1]

RC5 - decryption

For i=r downto 1 do
RD,,=((RD:-S[2i+1])>>>LD)) €LD,
LD;4=((LD;-S[2i])>>>Rd;4) ©Rd; 4

B=RD,-S[1]

A=LD,-S[0]

Fluintext 12w hils} Maimiext (2w hits)

§[2]

5] 2r]

Cipheriext (e hing Ciphertent (2w biis)

{nd Eneryptisn (b} eerypeinn
Figure fi.fi BCE Eneryplian and Deeryplion

14

RC5 Algorithm: Key Expansion

= Two subkeys are used in each round, two subkeys are used in an
additional operation

2 We need 2r+2 subkeys: let t=2r+2
= Each subkey is one word (w bits) in length

= The subkeys are generated in the array S
2 Sis initialized with a certain pattern (details on the next slide)

2 The b-byte key K[0...b-1] is converted into an array of words K'[0...c-1]
» Content of K is simply copied to K'; if b is not a multiple of w, fill in with 0

= Nominal version: key has 128 bits, words have 32 bits: K’ will have c=4
elements

» Recall: they key K has b*8 bits, a word has w bits
» Cis the smallest integer larger than b*8/w

2 Mix K with S to produce the final values for the array S (details on the
next slide)

15

RC5 Algorithm: Key Expansion

= |nitialize S as follows:
S[0]=P,,
Fori=1to t-1 do S[i]=S[i-1]+Q,
o Constants P, and Q,, (on w bits) are defined as P,=0dd[(e-2)2"], Q —Gdd[ﬁ
1)2%, where Odd gwes the closest odd mte?er to |t5 output, e is the base of the

natural logarithm and ¢ is the golden ration (4=(1+v5)/2. Values are given in the
table bellow (in hexadecimal)

W 16 32 64
P.. B7E1 | B/E15163 | B/E151628AED2AGE
OE37 | 9E3779B9 | OE3779BI7F4ATC15

= Mix array S with the key array K’ to produce the final values for S:
i=j=X=Y=0; t=2r+2
Do 3 x max(t,c) times:
X=S[i]=(S[i]+X+Y)<<<3;
Y=K'[j]=(K'[i]+X+Y)<<<(X+Y);
i=(i+1) mod t;
J=(j+1) mod c;

16

RC5 Algorithm: Key Expansion

Comments on RCH

s Note the exceptional simplicity of the code
2 5lines of code both for encryption and for decryption

s Rotations are the only nonlinear portions of the algorithm

1 Because the amount of rotation varies depending on the data moving
through the algorithm, linear and differential cryptanalysis are difficult

17

RC4 Stream Cipher

This Is the most popular symmetric stream cipher
Designed by Rivest for RSA Security

Used in SSLITLS (Secure Sockets Layer/Transport Layer Security)

standards for secure communication between Web browsers and
SErvers

Used in WEP, part of the [EEE 802.11 wireless LAN standard

RC4 was kept as a trade secret by RSA Inc but got anonymously
posted on the Internet in 1994

RC4 Stream Cipher Structure

Process the message byte by byte (as a stream)
Typically have a (pseudo) random stream key that is XORed with plaintext bit
by bit
Randomness of stream key completely destroys any statistically properties in
the message

2 C; = P, ¥OR StreamkKey;

1

The simplest encryption/decryption algorithm possible!

A stream cipher is similar o the one-time pad discussed a few lectures back

2 The difference is that a one-time pad uses a genuine random number stream,
whereas a stream cipher uses a pseudorandom number stream generated based
on a secret key

One must never reuse stream key
1 Otherwise can remove effect and recover messages

2 XOR two ciphertexts obtained with the same key stream to obtain the XOR of the
plaintexts — enough to know about the structure of the files to effectively attack
them

19

Stream cipher structure

RC4 Stream Cipher Structure

ke
[

l

Pseudorandom byie

lE"FI-lrI.tl'Fr
(kKey siream generalory

|

Flainiexi > =
byite stream
L] ENCEYPTION

Ciplhe riexi

by
[

l

Prseudorandom byie
generator
(Key stream @eneralor)

.

byie stream
{'1

y -

=

DECEYPTION

Figure 6.8 Stream Cipher Diagram

Plaintexi
byile stream
1 |

20

RC4 Stream Cipher Design

Key stream should have a large period — a pseudorandom number
generator uses a function that produces a deterministic stream of
bits that eventually repeats

Key stream should approximate the properties of a frue random
number generator
2 Same frequency of 0 and 1

2 Iftreated as a stream of bytes, all 255 values should occur with the
same frequency

Key should be long enough to protect against brute-force attack
1 Atleast 128 bits

Advantage over block ciphers: generating the stream key is much
faster than encrypting and decrypting and less code is needed

21

RC4 Stream Algorithm

s Key length is variable: from 1 to 296 bytes

s Based on the key initialize a 256-hyte state vector $: S[0...259]
1 Atalltimes S contains a permutation of the numbers 0, 1, ..., 253

» Forencryption and decryption a byte k Is selected from S and the
entries in S are permute

RC4 - initialization of S

= [nitially S[i]=1, 1=0,1,...,255 and create a temporary vector T of length
256 - the key K is copied to T (if K has less than 256 bytes, repeat K
as many times as necessary to fill T)
For =0 to 255 do
S[ij=:
T[I]=K[i mod keylen]
1 Input key is never used after this initialization

x Use T to produce the initial permutation of S
=0
Fori=0to 255 do
J=(+3[1]+T[]) mod 256
Swap(S{1].3[])

23

RC4 - stream generation

RC4 algorithm (key generation):
1j=0;
While(true)
i=(i+1) mod 256;
j=(j+S[i]) mod 256;
Swap(S[i],S[i]);
t=(S[i]+S[j]) mod 256;
k=S[t];
Encryption: XOR k with the next byte of the plaintext
Decryption: XOR k with the next byte of the ciphertext

There is no practical attack against RC4 with reasonable key length such as
128 bits

Strength of RC4: there has been a report of a problem in the WEP protocol
(for 802.11 wireless LAN) — the problem is not with RC4 but rather with the
way in which keys are generated to use as input to RC4

2 Can be easily fixed

24

Blowfish Algorithm

* a symmetric block cipher designed by
Bruce Schneler in 1993/94

* characteristics
— fast implementation on 32-bit CPUs
— compact in use of memory
— simple structure eases analysis/implemention
rity by varying key size

— variable secL

* has been imp

emented

In various products

Blowfish Algorithm

e Blowfish is a keyed, symmetric block cipher,
designed in 1993 by Bruce Schneier and
Included in a large number of cipher suites
and encryption products. (Wikipedia)

e Blowfish is a symmetric block cipher that can
be used as a drop-in replacement for DES or
IDEA. (Bruce Schneler)

e Blowfish was designed in 1993 by Bruce
Schneiler as a fast, free alternative to existing
encryption algorithms.

e |t takes a variable-length key, from 32 bits to
4438 bits, making it ideal for both domestic
and exportable use.

26

Blowfish Algorithm

Since then it has been analyzed
considerably, and it is slowly gaining
acceptance as a strong encryption algorithm.

Blowfish is unpatented and license-free, and
Is avallable free for all uses.

VWhile no effective cryptanalysis of Blowfish
has been found to date, more attention iIs

now given to block ciphers with a larger block
size, such as AES or Twofish.

At the time, many other designs were

proprietary, encumbered by patents or kept
as government secrets.

Schneier has stated that, "Blowfish iIs
unpatented, and will remain so in all
countries. The algorithm is hereby placed in

the public domain, and can be freely used by
anyone.

27

Blowfish Algorithm

o The original Blowfish paper was presented at

the First Fast Software Encryption workshop
In Cambridge, UK (proceedings published by

Springer-Verlag, Lecture Notes in Computer
Sclence #809, 1994) and the April 1994 Issue

of Dr. Dobb's Journal.

o 'Blowfish--One Year Later" appeared in the
September 1995 Issue of Dr. Dobb's Journal.

Blowfish Algorithm

e There are two parts to this algorithm;
» A part that handles the expansion of the key.

» A part that handles the encryption of the data.

e The expansion of the key: break the original key
into a set of subkeys. Specifically, a key of no more
than 448 bits is separated into 4168 bytes. There is
a P-array and four 32-bit S-boxes. The P-array
contains 18 32-bit subkeys, while each S-box
contains 256 entries.

e The encryption of the data: 64-bit input is denoted

with an x, while the P-array is denoted with a Pi
(where i is the iteration).

29

Blowfish Algorithm

o Blowfish has a 64-bit block size and a key

length of anywhere from 32 bits to 448 bits
(32-448 bits In steps of 8 bits; default 128

bits).
o |tis a 16-round Feistel cipher and uses large
key-dependent S-boxes. It is similar In

structure to CAST-128, which uses fixed S-
boxes.

Blowfish Algorithm

e The diagram to shows the action of P,
Blowfish. Each line represents 32 el
bits. The algorithm keeps two () .

subkey arrays: the 18-entry P-

array and four 256-entry S-boxes. >'<,
e The S-boxes accept 8-bit input and

produce 32-bit output. One entry of

|
: 14 more rounds !
| |

the P-array is used every round, P,

and after the final round, each half éi—»J

of the data block is XORed with [T &
one of the two remaining unused S
P-entries. |

31

Blowfish Algorithm

o Initialize the P-array and S-boxes

o XOR P-array with the key bits. For example, P1
XOR (first 32 bits of key), P2 XOR (second 32 bits of
key), ...

o Use the above method to encrypt the all-zero string
e This new output is now P1 and P2

o Encrypt the new P1 and P2 with the modified
subkeys

e This new output is now P3 and P4

o Repeat 521 times in order to calculate new subkeys
for the P-array and the four S-boxes

32

Blowfish Key Schedule

« uses a 32 to 448 bit key

» used to generate
— 18 32-bit subkeys stored Iin K-array K
— four 8x32 S-boxes stored in S; .

« key schedule consists of:
— initialize P-array and then 4 S-boxes using pi
— XOR P-array with key bits (reuse as needed)

— loop repeatedly encrypting data using current P & S
and replace successive pairs of P then S values

— requires 521 encryptions, hence slow in rekeying

33

Blowfish Encryption

* uses two primitives: addition & XOR

» data Is divided Into two 32-bit halves 7, & &,

for 7 = 1 to 16 do
R, = L., XOR P,;
L, = F[R,] XOR R,_,:

L7 = Ryg ZOR Prg;
Ry = ILyg XOR 1i4;
* Where

F[ﬂlbf I-':ird] — ((Slra + SE,b] XOR SE,C) T S-i,a

34

Discussion

« key dependent S-boxes and subkeys,
generated using cipher itself, makes
analysis very difficult

« changing both halves in each round
Increases security

« provided key is large enough, brute-force
key search is not practical, especially
given the high key schedule cost

| BEegin

v

-

-

R = Fix=Ll XOR xR

. 4

b d

i=1&

-

ox

wF HOR P17
xLXOR P12

-

Fecombine L. and xR

-

EFE+rxd

8 bits 8 bits 8 bits 8 bits

S-box S-box S-box S-box
1 2 3 4

32|bits 32|bits 32|bits 32|bits

i)
\

Diagram of Blowfish's F function

37

o The diagram to the right shows Blowfish's F-
function. The function splits the 32-bit input
Into four eight-bit quarters, and uses the

quarters as Input to the S-boxes. The outputs

are added modulo 2°2 and XORed to produce
the final 32-bit output.

o Since Blowfish Is a Felstel network, it can be

Inverted simply by XORing P17 and P18 to

the ciphertext block, then using the P-entries
In reverse order.

-
I

xLid = ab,c,d
where ab,c,d are ¥-bil quarters

:

F(xL) = ((S1,a+ 52,b mod 232) XOR 53,0 + 34,d mod 232

]
-

The Function F

39

Blowfish's key schedule starts by initializing the F’-ari'ay
and S-boxes with values derived from the hexadecimal
digits of pi, which contain no obvious pattern.

The secret key is then XORed with the P-entries in order
(cycling the key if necessary). A 64-bit all-zero block is
then encrypted with the algorithm as it stands.

The resultant ciphertext replaces P1 and P2. The
ciphertext is then encrypted again with the new subkeys,
and P3 and P4 are replaced by the new ciphertext. This
continues, replacing the entire P-array and all the S-box
entries.

In all, the Blowfish encryption algorithm will run 521

times to generate all the subkeys - about 4KB of data Is
processed.

40

Cryptanalysis of Blowfish

e There is no effective cryptanalysis of Blowfish
known publicly as of 20095, although the 64-bit block
size is now considered too short, because
encrypting more than 232 data blocks can begin to
leak information about the plaintext due to a birthday
attack.

e Despite this, Blowfish seems thus far to be secure.
While the short block size does not pose any serious
concerns for routine consumer applications like e-
mail, Blowfish may not be suitable in situations
wh?l[e Iiarge plaintexts must be encrypted, as in data
archival.

41

Blowfish in practice

e Blowfish is one of the fastest block ciphers in
widespread use, except when changing keys.

e Each new key requires pre-processing equivalent to
encrypting about 4 kilobytes of text, which is very
slow compared to other block ciphers.

e This prevents its use in certain applications, but is
not a problem in others. In one application, it is
actually a benefit: the password-hashing method
used in OpenBSD uses an algorithm derived from
Blowfish that makes use of the slow key schedule;

the idea is that the extra computational effort
required gives protection against dictionary attacks.

42

Blowfish In practice (Cont)

¢ In some implementations, Blowfish has a relatively
large memory footprint of just over 4 kilobytes of
RAM. This is not a problem even for older smaller
desktop and laptop computers, but it does prevent
use in the smallest embedded systems such as
early smartcards.

e Blowfish is not subject to any patents and is
therefore freely available for anyone to use. This

has contributed to its popularity in cryptographic
software.

43

Algorithm Key Size(Bits) Block Size(Bits)
DES 64 Hd

AES | 28 128

Blowfish |28 64

=i

e
n

M

ek

xecution Time(Seconds)
| ek
0 n

1
<

I
o

3

DES
arES
BlowTish

10 20 =2e 56 6 93 1132 133 160 203

IData Block Size (1)

Performance Hesults with EXCR mode

44

