Diyala University
College of Engineering
Computer & Software
Engineering Department

Fourth Year 2012/2013

Public Key Cryptography

Chapter 3/Part2

PRESENTED BY
DR. ALl J. ABBOUD

3.1 Objectives

* Prime Numbers.

* Fermat’s and Euler’s Theorems.
* Testing for Primarily.

* Discrete Logarithm
 Diffie-Hellman Key Exchange Algorithm.
* Security of Diffie-Hellman Algorithm.
* Key Exchange Protocols.

* Man-in-the-Middle Attacks.

* ElIGamal Cryptosystem.

* Security of EIGamal Cryptosystem.

3.2 Prime Numbers

Any integer a = 1 can be factored in a unique way as
a=p{' X p§ X - X pf
where p; < po < ... < p,are prime numbers and where each a; is a positive integer.

This 1s known as the fundamental theorem of arithmetic; a proof can be found in any
text on number theory.

91 =7 x 13
3600 = 2% x 3% x 52
11011 = 7 x 112 x 13

[t is useful for what follows to express this another way. If P is the set of all prime
numbers, then any positive integer a can be written uniquely in the following form:

a=[]p% where eacha, = 0
peP
The right-hand side is the product over all possible prime numbers p; for any partic-
ular value of a, most of the exponents a, will be 0.
The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a; = 2, az = 1}.
The integer 18 is represented by {a, = 1. a; = 2}.
The integer 91 i1s represented by {a; = 1, a;3 = 1}.

3.2 Prime Numbers

Multiplication of two numbers is equivalent to adding the corresponding expo-

nents. Given a = Hp”-'", b = Hpb-'“. Define k = ab. We know that the integer
peP peP

k can be expressed as the product of powers of primes: k = Hpkﬂ. It follows that
kp = ap + by forallp € P. peP

k=12 x 18 = (22 X 3) X (2 X 3%) = 216
ky=2+1=3k;=1+2=3
216 =22 x 33 =8 x 27

What does it mean, in terms of the prime factors of @ and b, to say that a divides b?
Any integer of the form p" can be divided only by an integer that is of a lesser
or equal power of the same prime number, p/ with j = n. Thus, we can say the
following.

—

3.2 Prime Numbers

Given
a=TIp"b= I 7"
pEP peEP

If a|b, then a, = b, for all p.

a = 12; b = 36; 12|36

12 = 2% % 3;36 = 2% x 32
02=2=b2

a; =1 =2 =0by

Thus, the inequality a, = b, is satisfied for all prime numbers.

It is casy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes.

300 = 22 x 3! x 52
18 = 2! x 32
ged(18,300) = 2! x 3! x 50 =6

The following relationship always holds:
If kK = ged(a, b), then k;, = min(ap, by) for all p.

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a practical method of calculating the
greatest common divisor.

3.3 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat'’s
theorem and Euler’s theorem.
Fermat’s Theorem

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

a’ ' = 1(mod p)

An alternative form of Fermat’s theorem is also useful: If p is prime and a is a
positive integer, then

al = a(mod p)

p=2a= a’ = 3° = 243 = 3(mod5) = a(modp)
p=5a=10 4" =10° = 100000 = 10(mod5) = 0(mod5) = a(modp)

3.3 FERMAT’S AND EULER’S THEOREMS

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function, written ¢(#), and defined as
the number of positive integers less than n and relatively prime to n. By convention,

¢(1) = L

DETERMINE ¢(37) AND ¢(35).

Because 37 is prime, all of the positive integers from 1 through 36 are rela-
tively prime to 37. Thus &(37) = 36.

To determine ¢b(35), we list all of the positive integers less than 35 that are rela-
tively prime to it:

1,2,3.4.6,8,9,11,12, 13,16, 17, 18
19,22, 23,24, 26,27.29,31,32,33,34
There are 24 numbers on the list, so $(35) = 24.

3.3 FERMAT’S AND EULER’S THEOREMS

Table lists the first 30 values of ¢p(n). The value (1) 1s without meaning but
1s defined to have the value 1.
It should be clear that, for a prime number p,

o(p)=p — 1

Now suppose that we have two prime numbers p and g with p # g. Then we can
show that, for n = pg,

d(n) = d(pg) = d(p) X dlg) = (p — 1) X (g — 1)

To see that b(n) = d(p) % ¢(q), consider that the set of positive integers less that n
is the set {1, ..., (pg — 1)}.The integers in this set that are not relatively prime to n
are the set {p,2p, ..., (g — 1)p} and the set |q. 2q.(p — 1)g}. Accordingly,

dn) =(pg —1) —[(g—1)+(p—1)]
=pg—(p+tgqg)+1
=(p—1)x(g—1)
= &d(p) < dlq)

3.3 FERMAT’S AND EULER’S THEOREMS

Some Values of Euler's Totient Function &(n)

n din) n din) n ih(n)
1 1 11 10 21 12
2 1 12 4 v 10
3 2 13 12 23 22
4 2 14 6 24 8
5 4 15 8 25 20
6 2 16 8 26 12
7 b 17 16 27 18
8 4 18 it 28 12
9 6 19 18 29 28
10 4 20 8 30 8

d2)=pB3) X TN =3 -1)x(7T-1)=2x6=12
where the 12 integers are {1,2,4,5,8,10, 11,13, 16, 17, 19, 20}.

3.3 FERMAT’S AND EULER’S THEOREMS

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

a®™ = 1(modn)

As is the case for Fermat's theorem, an alternative form of the theorem is also
useful:

a®™*! = g(mod n)

TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large
prime numbers at random. Thus, we are faced with the task of determining whether
a given large number is prime. There is no simple yet efficient means of accomplish-
ing this task.

In this section, we present one attractive and popular algorithm. You may be
surprised to learn that this algorithm yields a number that is not necessarily a
prime. However, the algorithm can yield a number that is almost certainly a prime.
This will be explained presently. We also make reference to a deterministic algo-
rithm for finding primes. The section closes with a discussion concerning the distri-
bution of primes.

10

3.4 Testing For Primarlity

Miller-Rabin Algorithm

Detamns oF THE Arcorrtayv These considerations lead to the conclusion that. if 1 1s
prime, then either the first element in the list of residues, or remainders,
(a9,a™d, ..., at ', azk‘?} modulo n equals 1; or some element in the list equals
(n — 1): otherwise n is composite (i.e., not a prime). On the other hand, if the
condition is met, that does not necessarily mean that n is prime. For example, if
n = 2047 = 23 x 89,then n — 1 = 2 % 1023. We compute 2'"> mod 2047 = 1,s0

that 2047 meets the condition but is not prime.
We can use the preceding property to devise a test for primality. The procedure

TEST takes a candidate integer n as input and returns the result composite if n is
definitely not a prime, and the result inconclusive if # may or may not be a prime.

TEST (n)

l. Find integers k, g, with k = 0, g odd, sc that
(n — 1= 2%g);

2. Select a random integer a,1 < a <n — 1;

3. if a%modn = 1 then return("inconclusive");

4. for 7 =0 to kK — 1 do

5. if a°modn=n— 1 then return("inconclusive");

6. return(”"composite");

11

3.4 Testing For Primarlity

Let us apply the test to the prime number n =29. We have
(n—1) =28 =2%7) =2%. First, let us try a=10. We compute
10" mod 29 = 17. which is neither 1 nor 28, so we continue the test. The next calcu-
lation finds that {ll}?]2 mod 29 = 28, and the test returns inconclusive (i.e., 29
may be prime). Let’s try again with a = 2. We have the following calculations:
2"mod 29 = 12; 2" mod 29 = 28: and the test again returns inconclusive. If
we perform the test for all integers a in the range 1 through 28, we get the same
inconclusive result, which is compatible with n being a prime number.

Now let us apply the test to the composite number n = 13 x 17 = 221.
Then (n—1) = 220 = 2%(55) = 2. Let us try a=5. Then we have
5 mod 221 = 112, which is neither 1nor220(5°°)* mod 221 = 168. Because we
have used all values of j (l.e.,j = O and j = 1) in line 4 of the TEST algorithm,
the test returns composite, indicating that 221 is definitely a composite num-
ber. But suppose we had selected @ = 21. Then we have 21> mod 221 = 200;
(217°)*mod 221 = 220; and the test returns inconclusive, indicating that 221
may be prime. In fact, of the 218 integers from 2 through 219, four of these will
return an inconclusive result, namely 21,47, 174, and 200.

12

3.5 Discrete Logarithm

a®"™ = 1 (mod n)

where ¢(n), Euler’s totient function, is the number of positive integers less than n
and relatively prime to n. Now consider the more general expression:

a”™ =1 (mod n)

[f @ and n are relatively prime, then there is at least one integer m that satisfies
Equation above. namely, M = ¢(n). The least positive exponent m for which
Equation above holds is referred to in several ways:

* The order of a (mod n)
* The exponent to which a belongs (mod n)

» The length of the period generated by a

13

3.5 Discrete Logarithm

To see this last point, consider the powers of 7, modulo 19:

7 = 7 (mod 19)
7?P=49 =2 x19 + 11 = 11 (mod 19)
7P =343 =18 x 19 + 1 = 1 (mod19)
7*=2401 =126 x 19 + 7 = 7 (mod 19)
75 = 16807 = 884 x 19 + 11 = 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be
proven by noting that 7° = 1(mod 19), and therefore, 7°*/ = 737 = 7/(mod 19),
and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)
are congruent to each other (mod 19). In other words, the sequence is periodic,
and the length of the period is the smallest positive exponent m such that
7" = 1(mod 19).

Table 8.3 shows all the powers of a. modulo 19 for all positive a < 19.The length
of the sequence for each base value is indicated by shading. Note the following:

1. All sequences end in 1. This is consistent with the reasoning of the preceding
few paragraphs.

I

. The length of a sequence divides ¢(19) = 18. That is, an integral number of
sequences occur in each row of the table.

3. Some of the sequences are of length 18. In this case, it is said that the base inte-
ger a generates (via powers) the set of nonzero integers modulo 19. Each such
integer is called a primitive root of the modulus 19.

14

3.5 Discrete Logarithm

Powers of Integers, Modulo 19

a ﬂ.’ H“ {,-4 HS a® H'.-" ﬂ'“ H')' ﬂ,Ill ﬁ'“ HI.’ ﬁ'” H” alS ﬂ,lﬁ ﬁf” 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 3 10 1
3 9 8 3 15 7 2 6 18 16 10 11 14 4 12 17 13 1
4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1
5 6 11 17 9 7 16 4 1 3 6 11 17 9 7 16 4 1
6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1
7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1
8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1
9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1
10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 i 1
11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1
12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
14 6 8 17 10 7 3 4 18 3 13 11 2 9 12 16 15 1
15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1
16 9 11 3 - 7 17 6 1 16 9 11 5 4 7 17 6 1
17 4 11 16 6 7 5 9 1 17 - 11 16 6 7 3 9 1
18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

15

3.5 Discrete Logarithm

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod n) 1s ¢(n). If a number is of this order, it 1s referred to as a
primitive root of n. The importance of this notion is that if @ is a primitive root of n,
then its powers

.....

are distinct (mod n) and are all relatively prime to n. In particular, for a prime num-
ber p.if a is a primitive root of p, then

¢ —
a,a>,a""!

are distinct (mod p). For the prime number 19, its primitive roots are 2,3, 10,13, 14,
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive
roots are those of the form 2, 4, p“, and 2p“, where p i1s any odd prime and « is a
positive integer. '

16

3.5 Discrete Logarithm

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a
number is defined to be the power to which some positive base (except 1) must be
raised in order to equal the number. That is, for base x and for a value y,

log,(v)

y=x
The properties of logarithms include
log (1) =0
log(x) =1
log.(yz) = log.(y) + log.(z)
log:(y") = r X log«(y)

Consider a primitive root a for some prime number p (the argument can be
developed for nonprimes as well). Then we know that the powers of a from 1
through (p — 1) produce each integer from 1 through (p — 1) exactly once. We also
know that any integer b satisfies

b = r(mod p) forsomer, wherel =r = (p — 1)

by the definition of modular arithmetic. It follows that for any integer b and a prim-
itive root a of prime number p, we can find a unique exponent ¢ such that

b = a'(modp) where0 =i= (p—1)

17

3.5 Discrete Logarithm

This exponent 7 is referred to as the discrete logarithm of the number b for the base
a (mod p). We denote this value as dloga_p{b},m
Note the following:

dlog,,(1) = 0 because a"modp = 1modp =1

1

dlogzp(a) =1 becausea modp = a

Here is an example using a nonprime modulus, n = 9. Here ¢(n) = 6 and
a = 2 is a primitive root. We compute the various powers of a and find

20=1 2%=7(mod9)
21 =2 2% = 5(mod9)
22 =4 2% =1 (mod9)
23 =8

This gives us the following table of the numbers with given discrete logarithms
(mod 9) for the roota = 2:

Logarithm 0 1 2 3 4 5
Number 1 2 4 8 7 3

To make i1t easy to obtain the discrete logarithms of a given number, we
rearrange the table:

Number 1 2

Lh

4 7 8
2 4 3

5

Logarithm 0O 1

3.5 Discrete Logarithm

Any positive integer z can be expressed in the form z = g + kd(n), with
0 = g < ¢(n). Therefore, by Euler’s theorem,

a‘® = a¥(mod n) if z = g mod ¢(n)
Applying this to the foregoing equality, we have

dngﬂ_p(.‘{.’}’] - [dngmF(I) + dnga_p{}’)][IHDd(ﬁ)(p]}

and generalizing,

dlog, p(y") = [r X dlog, ,(y)l(mod ¢(p))

This demonstrates the analogy between true logarithms and discrete logarithms.
Keep in mind that unique discrete logarithms mod m to some base a exist only
if @ 1s a primitive root of m.
Table 8.4, which is directly derived from Table 8.3, shows the sets of discrete
logarithms that can be defined for modulus 19.

Table 8.4 Tables of Discrete Logarithms, Modulo 19

(a) Discrete logarithms to the base 2, modulo 19

ia 1 2 3 4 3 4] 7 8 9 10) 11 |12 | 13 | 14 | 15 | 16 | 17 | 18
log, o(a) 18 | 1 13 | 2 16 | 14 | 6 3 8 17 | 12 | 15 5 7 11| 4 | 9
(b) Discrete logarithms to the base 3, modulo 19
a 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
logs 10(a) 18 | 7 1 14 | 4] 6 3 2 11 (12 | 15 | 17 | 13 | 5 10 | 16 | 9

19

3.5 Discrete Logarithm

(c) Discrete logarithms to the base 10, modulo 19

a 1 |2 |3 4 | 5|6 | 7|8 |9 1011 |12 |13 (14|15 |16 |17 | 18
logypro(a) | 18 | 17 | 5 62 | 4|12 (15|10 1 6 | 3 |13 (11| 7 |14|8 |9
(d) Discrete logarithms to the base 13, modulo 19
a 1 213 1]4 516 |7 (8 |9 |10]11 12|13 |14 | 15|16 |17 | 18
logyae(ay | 18 |11 | 17 | 4 |14 [10 [12 |15 |16 | 7 | 6 | 3 1 51131 8 (2] 9
(e) Discrete logarithms to the base 14, modulo 19
a 1 | 2 3 (4|5 (6 7T |8 |9 (101112 (13|14 |15 |16 | 17 | 18
logygo{ay | 18 |13 | 7 [8 |10 2 [6 | 3 |14 | 5 [12 |15 |11 | 1 |17 |16 | 4 | 9
(f) Discrete logarithms to the base 15, modulo 19
a 1 |2 |3 |4 |5 |6 718 |9 (1011 |12 |13 (14| 15|16 (17 | 18
logisqofa)y | 18 | 5 |11 (10 | 8 |16 [12 |15 | 4 [13| 6 | 3 | 7 [17| 1 2 114 9

20

3.6 Diffie-Hellman Key Exchange Algorithm

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography and is generally

referred to as Diffie-Hellman key exchange. A number of commercial products
employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a key
that can then be used for subsequent encryption of messages. The algorithm itself is
limited to the exchange of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. Recall from Chapter 8 that a primitive root of a prime number p as
one whose powers modulo p generate all the integers from 1 top — 1.Thatis,if a is
a primitive root of the prime number p, then the numbers

amndp,azmudp, ...,a”_]mndp

are distinct and consist of the integers from 1 through p — 1 in some permutation.
For any integer b and a primitive root a of prime number p, we can find a
unique exponent i such that

b = a'(mod p) where 0 =i = (p — 1)

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We
express this value as dlog, ,(b).

21

3.6 Diffie-Hellman Key Exchange

Figure Below summarizes the Diffie-Hellman key exchange algorithm. For this
scheme, there are two publicly known numbers: a prime number ¢ and an integer o
that is a primitive root of g. Suppose the users A and B wish to exchange a key. User
A selects a random integer X, < ¢ and computes Y, = a*4modg. Similarly, user
B independently selects a random integer X < g and computes Yz = a”**modg.
Each side keeps the X value private and makes the Y value available publicly to the
other side. User A computes the key as K = (}“',g)‘l"*'t mod g and user B computes the

key as K = (Y 4)*” mod g . These two calculations produce identical results:

K = (Yp)**modq
= (e*"modgq)* mod g
= (") mod ¢ by the rules of modular arithmetic
= o4 mod q
— (&X.A}ermndq
= (e® modgq)*modg
— (Y4)""modg
The result is that the two sides have exchanged a secret value. Furthermore,
because X4 and X are private, an adversary only has the following ingredients to
work with: g, a, Y 4,and Y. Thus, the adversary is forced to take a discrete logarithm

to determine the key. For example, to determine the private key of user B, an adver-
sary must compute

Xp = dlog, ,(Yp)

The adversary can then calculate the key K in the same manner as user B calculates it.

22

3.6 Diffie-Hellman Key Exchange

Global Public Elements
prime number

o ¢ < g and o a primitive root of g

User A Key Generation
Select private X X,<q

Calculate public ¥ 4 ¥, = o mod ¢

User B Key Generation
Select private Xp Xp <gq

Calculate public Yp Yp= a8 mod q

Calculation of Secret Key by User A

XA
)

K=(Y, mod g

Calculation of Secret Key by User B

K= [YA)XH mod g

3.7 Security of Diffie-Hellman Key Exchange

The security of the Diffie-Hellman key exchange lies in the fact that, while 1t 1s
relatively easy to calculate exponentials modulo a prime, it is very difficult to calcu-
late discrete logarithms. For large primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number
g = 353 and a primitive root of 353, in this case @ = 3. A and B select secret keys
X4 = 97and X = 233, respectively. Each computes its public key:

A computes Y, = 3" mod 353 = 40.
B computes Y = 3% mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

A computes K = (Yp)** mod 353 = 248" mod 353 = 160.
B computes K = (Y4)**mod 353 = 40 mod 353 = 160.

We assume an attacker would have available the following information:

qg=33a=3Y,=40;Yy = 248
In this simple example, it would be possible by brute force to determine the secret
key 160. In particular, an attacker E can determine the common key by discovering
a solution to the equation 3*mod 353 = 40 or the equation 3” mod 353 = 248. The
brute-force approach is to calculate powers of 3 modulo 353, stopping when the
result equals either 40 or 248. The desired answer is reached with the exponent
value of 97, which provides 3”” mod 353 = 40.
With larger numbers, the problem becomes impractical.

24

3.8 Key Exchange Protocols

Figure Belowshows a simple protocol that makes use of the Diffie-Hellman calcula-
tion. Suppose that user A wishes to set up a connection with user B and use a secret
key to encrypt messages on that connection. User A can generate a one-time private
key X4, calculate Y4, and send that to user B. User B responds by generating a pri-
vate value Xp, calculating Yp. and sending Yp to user A. Both users can now calcu-
late the key. The necessary public values g and « would need to be known ahead of
time. Alternatively, user A could pick values for g and « and include those in the
first message.

As an example of another use of the Diffie-Hellman algorithm, suppose that a
group of users (e.g., all users on a LAN) each generate a long-lasting private value
X; (for user i) and calculate a public value Y;. These public values, together with
global public values for g and «, are stored in some central directory. At any time,
user j can access user i's public value, calculate a secret key, and use that to send an
encrypted message to user A. If the central directory is trusted, then this form of
communication provides both confidentiality and a degree of authentication.
Because only i and j can determine the key, no other user can read the message
(confidentiality). Recipient i knows that only user j could have created a message
using this key (authentication). However, the technique does not protect against
replay attacks.

25

User A

Generate

random X, < ¢;
Calculate

¥, =a" modg

Calculate
K=(Yp" mod g

3.8 Key Exchange Protocols

User B

Generate

random Xp < g;
Calculate

Yp= o' mod g,
Calculate

K= (Y)"s mod g

26

3.8 Man-in-the-Middle Attacks

The protocol depicted in last Figure is insecure against a man-in-the-middle attack.
Suppose Alice and Bob wish to exchange keys, and Darth 1s the adversary. The
attack proceeds as follows.

.

]
-

n

Darth prepares for the attack by generating two random private keys X and
X and then computing the corresponding public keys Y and Yp,.

Alice transmits Y, to Bob.

. Darth intercepts Y, and transmits Y,; to Bob. Darth also calculates

K2 = (Y,)"”modg.
Bob receives Y}y, and calculates K1 = (Yp;)**mod q.

. Bob transmits Y to Alice.
6.

Darth intercepts Yp and transmits Yy to Alice. Darth calculates
K1 = (Yg)*"modg.

Alice receives Yy, and calculates K2 = (Y ;)" mod g.

At this point, Bob and Alice think that they share a secret key, but instead Bob

and Darth share secret key K1 and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way.

27

3.8 Man-in-the-Middle Attacks

. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M) , where M' 1s any message. In the

first case, Darth simply wants to eavesdrop on the communication without
altering it. In the second case, Darth wants to modify the message going

to Bob.

The key exchange protocol 1s vulnerable to such an attack because 1t does
not authenticate the participants. This vulnerability can be overcome with the use
of digital signatures and public-key certificates

28

3.9 ElIGamal Cryptosystem

Global Public Elements
prime number

o < g and @ a primitive root of g

Select private X
Calculate Y,
Public key

Private key

Key Generation by Alice

X,y<g-1

Y, :a‘X“d‘modq
PU=|q,a,Y,}
Xy

29

3.9 ElIGamal Cryptosystem

Encryption by Bob with Alice’s Public Key

Plaintext: M<g

Select random integer k k<g

Calculate K K=(Y,)* modq
Calculate C,; Cy = a* mod g
Calculate G, Cy = KM mod g
Ciphertext: (Cy.GC5)

Decryption by Alice with Alice’s Private Key

Ciphertext: (C;.G)
Calculate K K=(C) mod q
Plaintext: M= (CZK_]} mod g

30

3.9 ElIGamal Cryptosystem

As with Diffie-Hellman, the global elements of ElGamal are a prime number

g and «, which is a primitive root of g. User A generates a private/public key pair as

follows:
I. Generate a random integer X4,suchthat1 < X, < g — 1.
2. Compute Y4 = o mod g.
3. Als private key is X 4; A’s pubic key is {q, a, Y 4).

|]

I

Any user B that has access to A’s public key can encrypt a message as follows:

. Represent the message as an integer M in the range 0 = M = g — 1. Longer

messages are sent as a sequence of blocks, with each block being an integer
less than g.

. Choose a random integer ksuch that 1] = k = g — 1.

. Compute a one-time key K = (Yﬂ}k mod ¢ .

Encrypt M as the pair of integers (Cy, ;) where
C, = &*mod q; C, = KM mod g

User A recovers the plaintext as follows:

. Recover the key by computing K = (C;)* mod ¢ .
. Compute M = (C,K ")mod q.

31

3.9 ElGamal Cryptosystem

Let us demonstrate why the ElIGamal scheme works. First, we show how K is
recovered by the decryption process:

K = (Yfl)k mod g K s defined during the encryption process
K = (a«®mod g)*mod g substitute using Y4 = e mod g

K = ¢ mod ¢ by the rules of modular arithmetic

K = (CI}X-*‘ mod g substitute using C; = o mod ¢

Next, using K, we recover the plaintext as

C; = KM mod g

(CEK_') modg = KMK 'modg = Mmodg = M
We can restate the ElGamal process as follows, using Figure 10.3.

Bob generates a random integer k.

Bob generates a one-time key K using Alice’s public-key components Y 4, g, and k.

fad Ind et
- . .

Bob encrypts k using the public-key component e, yielding C,. C provides suffi-
cient information for Alice to recover K.

4. Bob encrypts the plaintext message M using K.
5. Alice recovers K from C; using her private key.

6. Alice uses K ! to recover the plaintext message from Cs.

32

3.9 ElGamal Cryptosystem

Thus, K functions as a one-time key, used to encrypt and decrypt the message.
For example, let us start with the prime field GF(19); that is, g = 19. It has

primitive roots {2, 3,10, 13, 14, 15}, as shown in Table 8.3. We choose a = 10.

fd Id i

L]

.

L]

(e Iad i
. . .

fad Iad i
. . .

Alice generates a key pair as follows:

Alice chooses X4 = 3.
Then Y, = a® mod ¢ = &’ mod 19 = 3 (see Table 8.3).
Alice’s private key is 5; Alice’s pubic key is {g, a, Y} = {19, 10, 3},

Suppose Bob wants to send the message with the value M = 17. Then,

Bob chooses k = 6.

Then K = (Y4)*mod ¢ = 3°mod 19 = 729 mod 19 = 7.

So

C; = *modg = a®mod 19 = 11

G=KMmodg =7 X 17Tmod 19 =119 mod 19 =5

Bob sends the ciphertext (11, 3).

For decryption:

Alice calculates K = (C;)**mod g = 11° mod 19 = 161051 mod 19 = 7.
Then K ' in GF(19) is 7 ' mod 19 = 11.

Finally, M = (C, K ')mod g = 5 % 11 mod 19 = 55 mod 19 = 17.

33

3.9 ElIGamal Cryptosystem

[f a message must be broken up into blocks and sent as a sequence of
encrypted blocks, a unique value of k should be used for each block. If k is used for
more than one block, knowledge of one block m; of the message enables the user to
compute other blocks as follows. Let

Ciy = a*mod g; C;; = KM;mod g
Cir = o mod g, Cr» = KM>mod g
Then,

o ~ KMimodgq M;imodgq
Cy, KM,modg M;modg

I[f M, is known, then M, is easily computed as

M, = (Cp1) ' C3p Mimod g

34

3.10 Security of EIGamal Cryptosystem

« The security of ElGamal is based on the difficulty of computing
discrete logarithms.

- Torecover A's private key, an adversary would have to compute
Xy = dlog, (Y,)

« Alternatively, to recover the one-time key , an adversary would have to
determine the random number k, and this would require computing the
discrete logarithm & = dlog,,(Cy)

« It points out that these calculations are regarded as infeasible if is at
least 300 decimal digits and has at least one “large” prime factor.

End of Chapter 3/Part2

