Feature Detectors: SURF, SIFT
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Scale Invariant

Feature Transform
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Interest Points

» it has a clear, preferably mathematically well-founded,
definition
» it has a well-defined position in image space

» the local image structure around the interest point is rich in
terms of local information contents, such that the use of
interest points simplify further processing in the vision system

» it is stable under local and global perturbations in the image
domain as illumination/brightness variations, such that the
interest points can be reliably computed with high degree of
reproducibility

» optionally, the notion of interest point should include an
attribute of scale, to make it possible to compute interest
points from real-life images as well as under scale changes



Feature Descriptors

Why need feature descriptors?
@ Keypoints give only the positions of strong features.

@ To match them across different images, have to characterize them
by extracting feature descriptors.

What kind of feature descriptors?
@ Able to match corresponding points across images accurately.
o Invariant to scale, orientation, or even affine transformation.

¢ Invariant to lighting difference.



ADVANTAGES OF INVARIANT LOCAL FEATURES?

Invariant to translation, rotation, scale changes

Robust or covariant to out-of-plane (=affine) transformations

Robust to lighting variations, noise, blur, quantization

Locality: Features are local, therefore robust to occlusion and clutter.
Efficiency: Close to real-time performance.

* Requirements

+ Region extraction needs to be repeatable (reliably finds the same
interest points under different viewing conditions) and accurate

+ We need a sufficient number of regions to cover the object.



Scale Invariant Feature Transform

» SIFT is an algorithm that finds interest point

» inspired by Harris corner detection

» the algorithm works the following way:

= L rp -

detection of extremes in scale-space representation
adjustment of the position of interest points
assignment of orientation to the interest points

construction of the descriptor of interest point




SIFT: Scale Invariant Feature Transform; transform image data into
scale-invariant coordinates relative to local features

' |nvariances:
-Scaling
-Rotation
~{[[lumination
~Deformation



Scale-Invariant Feature Transform

+ Generates image features, “keypoints”
— invariant to image scaling and rotation

— partially invariant to change in illumination
and 3D camera viewpoint

— many can be extracted from typical images

— highly distinctive

SIFT [Lowe]



SIFT Algorithm Stages

+ Scale-space Extrema Detection
— Uses difference-of-Gaussian function

» Keypoint Localization
— Sub-pixel location and scale fit to a model
» Orientation assignment

— 1 or more for each keypoint

» Keypoint descriptor
— Created from local image gradients



Extrema Detection

» Keypoint must be a minima or maxima of
its 8 neighbors at it's scale and the 9

neighbors above and 9 below.
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7 FINDING “KEYPOINTS”(CORNERS)
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Idea: Find keypoints, but scale invariant
Approach

* Run linear filter (diff. of Gaussians) at different resolutions (scale)
of image pyramid

~+ Build difference of Gaussian DoG pyramid

+ Locate extremas of DoG pyramid (xi,yi,oi)
+ Refine the keypoint localization
Discarding weak points
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' DIFFERENCE OF GAUSSIAN PYRAMID
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Object Recognition from Local Scale-lnvarnant Features
Diawid . Lowe
Presented by Ashley L Kapron




DIFFERENCE OF GAUSSIAN PYRAMID

T, NN, e -

Detect maxima and minima of difference-of-Gaussian in scale space
| by
I - comparing each pixel in the pyramid to its 26 neighbors (8 neighbors
I at the same level of the pyramid)
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Scale
(next
octave)

Scale
(first

octave)

Gaussian

Difference of
Gaussian (DOG)

@ Have 3 different scales within each octave (doubling of o).

@ Successive DOG images are subtracted to produce D).

@ D images in a lower octave are downsampled by factor of 2.
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Obrazek: Scale-space representations



Scale Invariant Detection

Consider regions (e.g. circles) of different
sizes around a point

Regions of corresponding sizes will look the
same in both images

The features look the

same to these two
operators.
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Scale Invariant Detectors

scale
* Harris-Laplacian? ey
Find local maximum of: = S
— Harris corner detector in / /‘E
space (image coordinates) / S~ /E
— Laplacian in scale — Harris — L

o SIFT (Lowe)? ccale

Find local maximum of:

— Difference of Gaussians in space
and scale
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DISCARDING LOW-CONTRAST KEYPOINTS

= The elimination strategy of weak points is simply by testing
against a threshold:

|D(x;,y;, 0{)| > threshold (0.03-Lowe)

) = L " *. -

, . ot
o P & & el
. - ¢

A
After scale space
extremas are discards low
detected contrast keypoints

UNIVERSITY OF TWENTE.



WHAT IS NEXT AFTER DETECTION?

After the detection of points,
How to describe them for matching?

Rotation Invariant Descriptors

Descriptors characterize the Ilocal j
neighborhood of a point in a vector. This
locality gives robustness to illumination
changes.

Find local orientation
— Dominant direction of gradient for
the Image patch

Rotate patch according to this angle
— This puts the patches into a canonical orientation.

UNIVERSITY OF TWENTE.



How to achieve mnvariance 1in i1mage matching

Two steps:

1. Make sure your feature defector 1s mvariant
» Harris 1s invariant to translation and rotation
» Scale 1s trickier
— common approach is to detect features at many scales using a
Gaussian pyramid (e.g.. MOPS)
— More sophisticated methods find “‘the best scale” to represent each
feature (e.g.. SIFT)
2. Design an mvariant feature descripfor

* A descriptor captures the intensity mformation in a region around
the detected feature point
» The simplest descriptor: a square window of pixels
— What's this invariant to?

» Let’s look at some better approaches...



Scale Invariant Feature Transform (SIFT) [Low04].

Convolve input image [ with Gaussian G of various scale o:

L(z,y,0)=G(z,y,0) « [(2,y) (16)
where .
1 T+

60.0.0) = grozenp (-5 ) (1)

This produces L at different scales.

To detect stable keypoint, convolve image I with difference of Gaussian:

D(z,y,0) = (G(z,y,ko)—G(z,y,0))«I(z,y)

(18)
= L(x,y,ko)— L(z,y,0).



MAJOR APPLICATIONS

* Wide baseline stereo

* Motion tracking

Panoramas and mosaicking
3D reconstruction

* Recognition
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Scale Invariant Feature Transform

Basic idea:
« Take 16x16 square window around detected interest point (8x8 shown below)
« Compute edge orientation (angle of the gradient minus 907) for each pixel
« Throw out weak edges (threshold gradient magnitude)

« (Create histogram of surviving edge orientations (8 bins)

0 27

angle histogram

Image gradients



ORIENTATION

The summarized procedure is lustrated as follows:

» Compute the smoothed image

» Compute the gradient magnitude and orientation in neighborhood
of (xi’, yi")

» Compute the histogram of orientations

» The highest peak in the histogram is assigned for orientation



The Key-point descriptor

» a description should be independent on geometric and

brightness transformations
» the neighborhood of the key-point is divided into 4x4 regions

» in each region the gradients are computed
» the orientations of the gradients are then rotated to align with

the dominant direction
» they are concatenated into a 128-dimensional feature vector
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SIFT DESCRIPTORS

The methodology is implemented as follows:

Compute image gradient over 16x16 array of locations centered at
(xi, vi) In the Gaussian smoothed image at the scale of the
keypoint.

Create an array of orientation histograms by computing the
gradient orientation with respect to the keypoint gradient
orientation.

Compute the orientation histogram of 8 orientations (45° covering)
in a 4x4 pixel block which results in 128 vector descriptor.

Compute the weights of contribution of each pixel in the
orientation histogram according to its closeness to the keypoint
center.

Normalize to unit length to reduce the effect of illumination change



SIFT DESCRIPTORS

1- Compute image gradient over 16x16 array of locations centered at
(xi, yi) in the Gaussian smoothed image at the scale of the keypoint.

2- Create an array of orientation histograms by computing the gradient
orientation with respect to the keypoint gradient orientation.

Image gradients



SIFT Descriptors

kK
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Image gradients Keypoint descriptor

@ Compute gradient magnitude and orientation in 16 x 16 region
around keypoint location at the keypoint’s scale.

@ Coordinates and gradient orientations are measured relative to
keypoint orientation to achieve orientation invariance.

@ Weighted by Gaussian window.

@ Collect into 4 x4 orientation histograms with 8 orientation bins.

@ Bin value = sum of gradient magnitudes near that orientation.



__  SIFT DESCRIPTORS

» Compute the orientation histogram of 8 orientations (45° covering)
~ in a 4x4 pixel block which results in 128 vector descriptor

| 8F)

Uhjﬁ 2n

angle histogram

-

8 bins

4x4 histogram array
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Keypoint descriptors

The result: 128 dimensions feature vector.
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SIFT Feature Calculation

N Take the region around a keypoint according to its scale
N Rotate and align with the previously calculated orientation
N 8 orientation bins calculated at 4x4 bin array

N 8 x4 x4 =128 dimension feature

MM B




lllumination Issues

a3 SIFT Is a 128 dimensional vector

y  For robustness to illumination, normalize the feature fo unit magnitude
y To cater for image saturations, truncate the feature to 0.2

y Renormalize to unit magnitude

y SIFT properties
+ Repeatable keypoints
+ Scale invarnant
* Rotation invariant
+ Robust to viewpoint
+ Robust to illumination changes



MATCHING LOCAL FEATURES

Image 1

To generate candidate matches, find patches that have
the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest

(within a threshold distance)



' MATCHING DESCRIPTORS

 Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database.

Row= 323 Row= 751
Col =291 Col =167
scale =49 scale =4.1

orfentation= -15° orientation= 63°




Feature matching

Given a feature i I,, how to find the best match m [,?

1. Detine distance function that compares two descriptors
2. Testall the features in I,. find the one with min distance



Measure difference as Euclidean distance between feature vectors:

1/2
d(u,v) = (Z(ui — 1*.1-)2)

i

Several possible matching strategies:
@ Return all feature vectors with d smaller than a threshold.
@ Nearest neighbor: feature vector with smallest d.

@ Nearest neighbor distance ratio:

@ dy. ds: distances to the nearest and 2nd nearest neighbors.
e If NNDR is small, nearest neighbor is a good match.



Feature distance: SSD

How to define the similarity between two features f,, {,?
*  Simple approach is SSD(f;. £,)

—  sum of square differences between entries of the two descriptors

—  Doesn’t provide a way to discard ambiguous (bad) matches




Feature distance: Ratio of SSDs

How to define the difference between two features f;, £,?

»  Better approach: ratio distance = SSD(f;, f,) / SSD(f;. £,°)
- 1 1s best SSD match to f, in I,
- £ is 284 best SSD match to f; in I,
—  An ambiguous/bad match will have ratio close to 1

—  Look for unique matches which have low ratio




Image matching

SSD feature distance

Suppose we use SSD
Small values are possible matches but how small?

Decision rule: Accept match if SSD <T
where T is a threshold

What is the effect of choosing a particular T?



Eftect of threshold T

SSD feature distance

g

Decision rule: Accept match if SSD <T
Example: Large T
T =250 = a. b, care all accepted as matches

a and b are true matches (“true positives”™)
— they are actually matches

c 1s a false match (“false positive™)
— actually not a match



Eftect of threshold T

SSD feature distance

Decision rule: Accept match if SSD <T
Example: Smaller T

T =100 = only a and b are accepted as matches

a and b are true matches (“true positives™)
c 1s no longer a “false positive” (it 1s a “true negative”)



o Some matches are correct, some are not.

o Can include other info such as color to improve match accuracy.

o In general, no perfect matching results.

@ Feature matching methods can give false matches.

@ Manually select good matches.

@ Or use robust method to remove false matches:

o True matches are consistent and have small errors.
o False matches are inconsistent and have large errors.

@ Nearest neighbor search is computationally expensive.

o Need efficient algorithm, e.g., using k-D Tree.
o k-D Tree is not more efficient than exhaustive search for large
dimensionality, e.g.. > 20.



MATCHING OF DESCRIPTORS

[ To1 Tep
Yol » We now compare the differential YsR
invariant features.

comparc

distance = 0.3




MATCHING OF DESCRIPTORS
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The vectors with the smallest
distance are paired.

smallest distance

distance = 0.2

Top-points in Image Maiching







AFTER RANSAC



Properties of SIFT-based matching

Extraordinarily robust matching technique
* (Can handle changes in viewpoint
— Up to about 60 degree out of plane rotation

* Can handle significant changes in illumination: Sometimes even
day vs. night (below)

« Fast and efficient — can run i real time
* Lots of code available:



Speeded Up Robust
Features (SURF)



» inspired by SIFT with real-time capabilities
» the DoG images and computing of Hess matrix is integrated
into computing the determinant of Hess matrix

» this approach is using the integral image

(19)

DEPARTMENT OF



SURF - SPEEDED UP ROBUST FEATURE

The goal is to develop both a detector and descriptor, which is
~ faster than SIFT, while not sacrificing performance.
- How?
By reducing the descriptor's dimension and complexity
v Fast interest point detection
v" Distinctive interest point description
v Speeded-up descriptor matching
v" Invariant to common image transformations:
« Image rotation
« Scale changes

« lllumination change

« Small change in Viewpoint



METHODOLOGY

* |ntegral image

* Much of the performance increase in SURF can be attributed to
the use of an intermediate image known as the Integral Image.
The integral image is computed and is used to speed up the
calculation of any upright rectangular area. Given an input image
[, and point (x, y) the integral image Iy, ,) IS calculated by the
sum of the values between the point and the origin. Formally, this
can be defined by the formula:

L=

=
Y
[

y
I3y = I(x,y)

=

I

I
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INTEGRAL IMAGE

» |f we wanted to compute the sum of intensity of a rectangle area
bounded by vertices A, B, C and D , the sum of pixel intensities is
calculated according to the integral image by: A — B — € + D and
offers a speeded calculation for large areas

¥

n A | S=AFRC+D |

1) =35 1

Area computation using integral images



DETECTION

1- Hessian

The SURF detector (for finding maxima or minima) is based on the
determinant of the Hessian matrix and if it is positive definite.
Hessian matrix needs to compute the second order partial derivative
of a function. For images, this can be done by convolution with an

appropriate kernel.

The Hessian matrix applied on image is:

- For every image
" point

Where L., L,,, and L., are the second derivatives or the Laplacian of
Gaussian of the image.



LAPLACIAN OF GAUSSIANS - APPROXIMATION

= |n SIFT the Laplacian of Gaussian is approximated by the DoG .

In a similar manner, Bay et al. (2008) proposed an approximation

to the Laplacian of Gaussians by using box filter representations

of the respective kernels.

integral image Box filter

increase the
performance



BOX FILTERS

the 2nd derivative L, L,,,, and L, .

= the weighted box filter approximation

Er ar—rarsl-rsr S = e rena=rre



SCALE ANALYSIS WITH CONSTANT IMAGE SIZE

= |In SIFT each layer, of an image pyramid, relies on the previous,

and images need to be resized which is not computationally
efficient.

SIFT - subsampling pyramid



FILTER IMAGE PYRAMIDS

(Bay et al.. 2008) proposed that since the processing time of the
kernels used in SURF is size invariant according to the used box
filters, the scale-space can be created by applying kernels of
increasing size to the original image. This allows for multiple
layers of the scale-space pyramid to be processed simultaneously
and contradicts the need to subsample the image hence providing
performance increase.
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SURF — scale space pyramid



SCALE - SPACE

= The scale-space is divided into a number of octaves, where an
octave refers to a series of response maps of covering a
doubling of scale.

= |n SURF the lowest level of the scale - space is obtained from
the output of the 979 filters.

= These filters correspond to a real valued Gaussian with a scale
of 1.2 values

= Increment of six or higher needed for preservation of the filter
structure L

Filters Dyy (top) and Dxy
(bottom) for successive scale
levels (979,15"15 and 21721).

UNIVERSITY OF TWENTE.



LOCALIZATION

The task of localizing the scale and rotation, the invariant interest
points in the image can be divided into three steps:

= Filtering with a threshold to keep strong points.

= Non-maximum suppression and interpolation to find a set of
candidate points just like the SIFT method.

The construction of the scale space starts with
the 979 filter, which calculates the blob response
of the image for the smallest scale. Then, filters
with sizes 15715, 21721.,and 27727 are applied,

scales

Interpolating the nearby data, to find the location in both space and
scale to sub-pixel accuracy. This is done by fitting a 3D quadratic

En agr=rasrs s r e =8 e =



DESCRIPTION

The SURF descriptor of each interest point detected by using the
integral images in conjunction with filters known as Haar wavelets in
order to increase robustness and decrease computation time.

- Haar wavelets are simple filters which can be used to find gradients in

the x and vy directions.
1 -1
1

Haar wavelets, the left filler computes the response in
the x-direction and the right the y-direction




DESCRIPTION

Orientation Task

= |n order to achieve rotation invariance each detected interest point
is assigned a re-producible orientation. To determine the
orientation, Haar wavelet responses of size 4s are calculated for a
set pixel within a radius 6s of the detected interest point,

= 5 refers to the scale at which the point was detected.
To find the dominant orientation:
= The Haar wavelet responses are represented as vectors

= Sum all responses within a sliding orientation window covering
an angle of 60°. The two summed response yield a new vector.



ORIENTATION TASK

» The longest vector is the dominant orientation and neglects the
others.

F 1 & F

dominant orientation



DESCRIPTOR COMPONENTS

The descriptor component starts by constructing a square
window around the interest point of 4 = 4 square sub-regions with
5 = 5 regularly spaced sample points inside. This square window
is oriented along the dominant direction. Then, calculate Haar
wavelet response d, and d, for these 25 points

Z dx et
Z dy dxﬂii‘: -: a
Z dx

S
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DESCRIPTOR COMPONENTS

- Weight the response with a Gaussian kernel centered at the interest point

- Sum the response over each sub-region for d, and d,,
- extract the sum of absolute value of the responses = feature vector of

length 64
D dx, ) dy, ) ldx| ,me]

Feature vector of length = Vsupregion * 4 * 4 = 64

Vsubregion =

- Normalize the vector into unit length to be invariant to contrast.

.....
.....

UNIVERSITY OF TWENTE.



DESCRIPTOR COMPONENTS

» Description




COMPARE SURF TO SIFT

» SURF: Fast-Hessian detector + SURF descriptor
= SIFT: DOG detector + SIFT descriptor
= SURF is good at
= handling serious blurring
= handling image rotation
= SURF is poor at
= handling viewpoint change
= handling illumination change
= SURF describes image faster than SIFT by 3 times.

= SURF is not as well as SIFT on invariance to illumination change
and viewpoint change (Bay et al., 2008)




Sample detected SURF keypoints (without non-maximal suppression):

(a) Low threshold gives many cluttered keypoints.

(b) Higher threshold gives fewer keypoints, but still cluttered.



Sample detected SURF keypoints.
With adaptive non-maximal suppression, keypoints are well spread out.

(a) Top 100 keypoints.
(b) Top 200 keypoints
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