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What is an interest point

= EXpressive texture

= [he point at which the direction of the
boundary of object changes abruptly

= [ntersection point between two or more
edge segments




Interest Points

o What do we mean with Interest Point Detection in an Image

o Goal: Find Same features between multiple images taken from different
position or time

For image registration, need to obtain correspondence hetween images.
Basic idea:

o detect feature points, also called keypoints
o match feature points in different images

Want feature points to be detected consistently and matched correctly.




Properties of Interest Point

iDetecto rs

= Detect all (or most) true interest points
= No false interest points
= Well localized.

= Robust with respect to noise.
= Efficient detection




Applications

* Image alignment

* Image Stitching

* 3D reconstruction

* Object recognition

* Indexing and database retrieval
* Object tracking

* Robot navigation




Overview of Keypoint Matching

. Find a set of
distinctive key-
points

. Define aregion
around each
keypoint

. Extract and
normalize the
region content

. Compute a local
descriptor from the
normalized region

d(fs- f5)<T

5. Match local
descriptors




Not all patches are created equal

Intuition: this would be a good patch for matching,
since it is very distinctive (there is only one patch in
the second frame that looks similar)
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Not all patches are created equal

Intuition: this would be a bad patch for matching,
since it is not very distinctive (there are many similar

patches in the second frame)
?




Matching with Features

Detect feature points in both images

Find corresponding pairs




Matching with Features

Detect feature points in both images
*Find corresponding pairs

Use these matching pairs to align images - the
required mapping is called a homography.




Matching with Features

* Problem 1:

— Detect the same point independently in both
images

counter-example:

no chance to match!

We need a repeatable
detector




Matching with Features

* Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive
descriptor




Some patches can be localized
or matched with higher accuracy than

others.




Line Identification

Ildentifyving parametric edges
- Can we identify lines?
- Can we identify curves?

- More ceneral
- Can we identify cireles/ellipses?

- Voting scheme called Hough Transform

‘ The Hough Transform

o A mathematical method designed to
find lines in images.

o It can be used for linking the results of
edge detection, turning potentially
sparse, broken, or isolated edges into
useful lines that correspond to the
actual edges in the image.




How to identity lines?
- For each edge point

- Add intensity to the corresponding line in Hough space

Each edge point votes on the possible lines
through them

If a line exists 1n the 1mage space, that point 1n
Hough space will get many votes and hence high
Intensity

Find maxima in Hough space

Find lines by equations v — mx+b

Basic Hough Transform
1. Inmitialize H[d. 8]=0

2. for each edge point [[x.v] in the immage

for©® = 0O to 180
d = xcosD + y=sino
H|d4d. ] +—= 1
3. Find the value(s) of (d, 8) for mmax H[d. ]

A similar procedure can be used for identifvying circles.
sguares, or other shape with appropriate change im Hough
Parameterization.




The Hough transform

Let (x,y) be the coordinates of a point in a binary image (containing
thresholded edge detection results).

The Hough transform stores in an accumulator array all pairs (a,b) that
satisfy the equation y = ax+ b. The (a,b) array is called the transform array.
Example:, the point (x,¥) = (1,3) in the input image will result in the equation
b =-a + 3, which can be plotted as a line that represents all pairs {a,b) that
satisfy this equation.

F S I

e

X fmage Transform




Hough Transform

- Only a few lines can pass through

(x.3)

- mx+b
- Consider (m.b) space

- Red lines are given by a line in
that space

b =yv—mx

- Each point defines a line in the
Hough space

- Each line defines a point (since
same m.b)

o Since each point in the image will map to a line in the transform domain,
repeating the process for other points will result in many intersecting

lines, one per point.
© The meaning of two or more lines intersecting in the transform domain
is that the points to which they correspond are aligned in the image.

o The points with the greatest number of intersections in the transform
domain correspond to the longest lines in the image.




Image "g. o Transform

o Describing lines using the equation y = ax + b (where a
represents the gradient) poses a problem, though, since
vertical lines have infinite gradient.

o This limitation can be circumvented by using the normal
representation of a line, which consists of two parameters:
p and 6.

p=xcosfl +ysinfd

=




Hough Transform
Example

|
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FIGURE 10.33

(a) Image of size

101 > 101 pixels, o
contaming five
points.

(b) Corresponding
parameter space.
(The pointsin (a)
were enlarged Lo
make them easier
1O see,) 0
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The Hough Transform Algorithm

Create a 2D array corresponding to a discrete set of
values for p and 6. Each element in this array is
referred to as an accumulator cell.
Increments too big: May not distinguish different lines
Increments oo small: Noise may cause lines to be missed

For each pixel (x,y) in the image and for each chosen
value of 6, compute x cos @ + y sin 6 and write the
result in the corresponding position (p, &) in the
accumulator array.

The highest values in the (p, ) array will
correspond to the most relevant lines in the image.




Line FittingHough Transform




Noise vs. Increments

ideal
* pand @ increments too

big: May not distinguish

different lines
* pand @ increments too noisy

small: Noise may cause
lines to be missed




Corner Detection

Corners, Edges, Smooth Areas




Corner Detection

Harris Corner Detector

= Corner point can be recognized in a window

= Shifting a window In any direction should give
a large change in intensity




iBasic Idea

'H.'
I
“flat” region: “edge™:
no change in no change along
all directions the edge direction

Corner Detection: Basic ldea

=~ VWhere two edges meet
N Where X and Y gradients are both high?7?

“‘cormer
significant change
in all directions




Harris Corner Detector

N A corner is a point around which the gradient has two or more dominant
directions

N Corners can be repeatably detected under varying illumination and view
point changes

» the corner can be defined as

1. an intersection of two edges

2. a (important) point where two dominant directions (gradients)
exist

» every corner is an important point, but not the other way
around

» a corner detection algorithm needs to be very robust




Corner
derivatives.

Ir

d the

Flat
Ions an

Different reg

Linear Edge

Obrazek

yojed abew jndu| sAneALSp X SAIJBALIBP A



Example of L-junction, Y-junction, T-junction,
Arrow-junction, and X-junction corner types




Correlation
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Mathematics of Harris
iDetector

= Change of intensity for the shift (u,v)

E(If,l")zz [I{:I—FEF?JJ—FVJ_I(I?}J)]E

X,V

shifted intensity intensity
Avuto-correlation

iTaylor Series

AX)  Can be represented at point & in terms of its derivatives

(x—a)’ Fot (x—a)’

J@) =@+ x—a)fx+—F1 by

It




Express /(x +wu. v+v) at (x, v):

I(x+u.v+v)=I(x.v)+ I (x+u—x)+1,(v+v—1y)

I(x+u,v+v)y=I(x.v)+Jl u+1yv

= .
E(uv)=> [I(x+u.v+v)—I(x. )]
¥ shifted ;tE‘ﬂEll’} ;Eﬂslf_&
E(1.v) = Z[Igﬁf )+ ul, +vI, — I(x/")F Taylor Serles
chifted mt-ensd.n- i Eﬂs“’.‘f’
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h

(H | 1{ _ _'IIII X,
E(uv)=(u 1')?'.{' N M = Z‘l 1.1, I I‘,J

i i

= E(uv)is an equétimn of an ellipse.
= Let A, and A, be eigenvalues of M




Eigen Vectors and Eigen Values

The eigen vector. x. of a matrix 4 1s a special vector, with
the following property

A= Where A 1s called eigen value

To find eigen values of a matrix 4 first find the roots of:
detd—A)=0

Then solve the following linear system for each eigen
value to find corresponding eigen vector

(A-ADx=0




Example

—1 2 O]
A= 0O 3 4
Eigen Values
O 0 7]
(1] (1] (1 |
X, =4l X5=|2} X=|0 Eigen Vectors
| < | | O | | O]

det(.4 — A )=0

—1 2 0 1 o 0O
det(| O 3 — Al 0O 1 ONn=0
O 0o 7 0o 0O 1
0
4

—1—A 2
det(| 0 3-A4 y=0
0 0 7—A

(—1—ANB—ANT—A)—0)=0
(—1—AN3—ANT—A)=0
A=—1, A=3, A=7




—1

0
| 0

b

=

0 2 0fx
0 4 4|x

Eigen Vectors
(A—Ax=0

o
4 |+
?_

1 0 0l|x

01 Of)x

0 0 1

0+2x, +0 =0
O+4x, +4x, =0
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x =1, x,=0, x;,=0




Autocorrelation Calculation

R(u,v) = %T(r +u,v+v)I[(x,v)
(x.yv )3T

Autocorrelation can be approximated by
sum-squared-difference (SSD):

Tlu, ) = r+u,y+v)—140(r,y
E I , [(x,v)]

(z,u)eW




SSD Calculation

Let .

ZIII}. 2;; v

then  E(u.v) =u’ Au




Harris Corner Detector : Mathematics

M

M

M

Wi 3 I,1, + Window function can be
> w(z,y)

2 Sl AT
LD, I ply
[ | * Product of first derivatives
£ .
E w(z,y) I }[Lﬁ AN of the image
Y

Z w(z, y)AI(AI)"

E(u,v):[u v}M




Eigenvalues and Eigenvectors
of the Auto-correlation Matrix

lower limit upper limit

A =Euv)=u Au < A,

where :;-J, and /Z_ are the two eigenvalues of A .

The eigenvector €. corresponding to f.+
gives the direction of largest increase E,

while the eigenvector €_ corresponding to A
gives the direction of smallest increase in E.




A\, for Edges, A_for Corners




Feature detection (interest point detection) summary

Here’s what you do

-

-

-

Compute the gradient at each point in the image

Create the H matrix from the entries in the gradient
Compute the eigenvalues

Find points with large 2._(i.e.. »_> threshold)

Choose points where 7 _1s a local maximum as interest points




Feature detection summary

Here’s what you do
* Compute the gradient at each point in the image
* (Create the H matrix from the enfries in the gradient
+ Compute the eigenvalues.

* Find points with large response (A= threshold)

I * Choose those points where /. is a local maximum as features (interest points)




(1) 1t both A; are small, then feature does not vary much in any
direction. = uniform region (bad feature)

(2) It the larger eigenvalue A; 3> A9, then the feature varies mainly in
the direction of vi. = edge (bad feature)

(3) If both eigenvalues are large, then the feature varies significantly
in both directions. = corner or corner-like (good feature)

(4) In practice, I has a maximum value (e.g., 255).
50, A, A9 also have an upper hound.
So, only have to check that min(A, A9) is large enough.




Harris Detector: Maths & Intuition

Window-averaged squared change of intensity
induced by shifting the image data by [u,V]:

/E(u V) = Ew(x@u y+V)- @

' 0\ /me-::Im;J\\ 'z h|1'-ted\\
l\Elllpse ) |_function ) \Etens‘tg/ (Intensmfﬂ\“

2E For nearly constant patches, this will be near 0.
oy For very distinctive patches, this will be larger.
= 5 Hence... we want patches where E(u,v) is LARGE.

Window function W()( y) """""""""""""" s
1in wmdﬂw; 0 outside (Gaussian




Fitting ellipses to each set of points

: T
The distribution of x and » ’ o =
derivatives can be characterized X
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Classification via Eigenvalues
;“l

Classification of
Image points using
eigenvalues of M:




= Measure of cornerness in terms of 4, 4,

0
M = SDS™ _|
I

R =detD —k(trace DY R=A42, k(A4 +2,)

(k — empirical constant, £ = 0.04-0.06)

——
Ao

*R depends only on
eigenvalues of M

* R 1s large for a corner

*R 1s negative with large
magnitude for an edge

*|R| is small for a flat
region




Algorithm : Harris Corner Detector

1. Computer x and y derivatives I, and I,, of the input image

2. Computer products of derivatives LIy, II, and I, I,

3. For each pixel, compute the matrix M in a local neighborhood
4. Compute the corner response R at each pixel

5. Threshold the value of R to select corners

6. Perform non-maximum suppression




Selecting Good Features

Image patch

WETY

"R ENS

(contrast auto-scaled)

> e -~
/7 .
o v

=~ Errorsurface
(vertical scale exaggerated relative to previous
plots) small A4, small 4,

o




Selecting Good Features

Image patch

100

12a0ns  EfTOr surface

s

iy 190 11X 200 &0 Ly B0

A,and A, arelarge




Selecting Good Features

Image patch

large A4, small A,




Harris detector example




fi1ais Value (red high, blue low)
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Find local maxima of fi;,




Harris features (1n red)




etectors

ﬁther Version of Harris

R =/ — 04, Triggs

_det(D) 44
- trace(D) A+ A

Szeliski (Harmonic mean)

R=/, Shi-Tomasi




Change in appearance of window w(x,y)
for the shift [u, V]:

Shifted
intensity

Window function W(x,y) = PR U /A— ..

1 in window, 0 outside Gaussian




11 1

M=)y

2 X 2 matrix of Image derivatives (averaged In
nelghborhood of a point).

>

IIQ/

ol ol

1.1, @&a

Notation:




Harris Detector piarrisss)

* Second moment matrix

1. Image

derivatives
(optionally, blur first)

o . I(op) I1,(cy)
p(c;.0p) = gloy) '(LIIII(JD) I}(op) ]J

2. Square of
det M = 44, derivatives

trace M = A + A, _
3. Gaussian
filter g{ ;)

4. Cornerness function — both eigenvalues are strong

har = det[ 1(c,.0 )] - oftrace(u(c,.05) | =
gIHgI)—-[gI 1)} —algI})+gI))T

2. Non-maxima suppression
Slide Credit: James Hays




Invariance and covariance

« We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
« Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations

Invariant / Covariant

e A function {( ) 1s invariant under some
transformation T( ) if its value does change
when the transformation 1s applied to its
argument:

1if f(x) = y then {(T(x))=y

e A function {( ) 1s covariant when 1t
commutes with the transformation T( ):

if f(x) = v then {(T(x))=T{H(x))=T(v)




Invariance to Geometric/Photometric Changes

* [Is the Harris detector invariant to geometric and
photometric changes?

¢« Geometric

— Rotation

— Scale
— Affine - ‘.

* Photometric - =

— Affine intensity change: 1xy) — a Ixy) + b




Harris Detector: Photometric Changes

» Affine intensity change

v Only derivatives are used => invariance to
Intensity shift Irx,y) — I (x,y) + b

v’ Intensity scale: I(x,y) — a I(x,y)

ﬂn'eshufl“ A\J/‘\ o “] " /.\
/ N\ | VR

X (image coordinate) x (image coordinate)




Image translation

| =

=

« Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation




Harris Detector: Rotation Invariance

e Rotation

™ \|‘ g
57 S

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same




Harris Detector: Scale Invariance

All points will
be classified

as edges




Harris Detector: Disadvantages

« Sensitive to:
— Scale change
— Significant viewpoint change
— Significant contrast change

Regeatability Rate (%)




How to handle scale changes?

A, must be adapted to scale changes.

I the scale change 1s known, we can adapt
the Harris detector to the scale change (1.¢.,
set properly 6; 6p).

What 1f the scale change 1s unknown?




Multi-scale Harris Detector

» Detects interest points at varying scales.
R(Ayy) = det(A(X,Y,61,6p)) — @ trace*(Ay(X,Y,65,6p))

c,=K"G

Gp— 0,
G =Y0p




Invariant Local Image Features

Properties of good features

* Local: features are local, robust to occlusion and
clutter (no prior segmentation!).

* Accurate: precise localization.

 Invariant (or covariant)

» Robust: noise, blur, compression, etc. Repeatable

do not have a big impact on the feature

* Distinctive: individual features can be matched to
a large database of objects.

» Efficient: close to real-time performance.




Invariant Local Image Features

Advantages of invariant local features

Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be
matched to a large database of objects

Quantity: many features can be generated for
even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide
range of differing feature types, with each
adding robustness




Scale Invariance

In many applications, the scale of the object of interest may vary in
different images.

Simple but inefficient solution:

e Extract features at many different scales.

@ Match them to the object’s known features at a particular scale.
More efficient solution:

@ Extract features that are invariant to scale.




Invariant Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,

rotation, scale, and other imaging parameters

(~7gpa—




Scale Invariant Detection

Consider regions (e.g. circles) of different sizes
around a point

Regions of corresponding sizes will look the same
imn both images

-

Scale Invariant Detection

= The problem: how do we choose corresponding
circles independently in each image?

-




How to handle scale changes? (cont’d)

« Alternatively, use scale selection to find the
characteristic scale of each feature.

« Characteristic scale depends on the feature’s spatial
extent (1.e., local neighborhood of pixels).

scale selection scale selection




How to handle scale changes?

* Only a subset of the points computed 1n scale space are selected!

The size of the circles corresponds to the scale
at which the point was selected.




Automatic Scale Selection

* Design a function F(x,6,) which provides some local
measure.

* Select points at which F(x,0,) 1s maximal over ¢,,.

max of F(x,c,)
corresponds to
characteristic scale!

F(xjﬁnja

P . T 7T T T i T T T T T T T
2.0 15l 18 1.0 389 § 19
&

Gﬂ

T. Lindeberg, "Feature detection with automatic scale selection” International
Journal of Computer Vision, vol. 30, no. 2, pp 77-116, 1998.




Scale Different




Scale Invariant Detection

* Solution:

— Design a function on the region (circle), which is “scale
invariant” (the same for corresponding regions, even if
they are at different scales)

— For a point in one image, we can consider it as a
function of region size (circle radius)

|ITIE:IQE: 1 s Image 2

scale = 1/2
/\ T [\

[ .

region size region size




Scale Invariant Detection

* Common approach:
Take a local maximum of this function

* QObservation: region size, for which the maximum is
achieved, should be invariant to image scale.

Important: this scale invariant region size Is
found in each image independently!

Image 1 f o4

region size

region size




Scale Invariant Detection

- A “good” function for scale detection:
has one stable sharp peak

bad

p . . f ] -~ f - Good

reglon size regioﬁ Size FEQIOI’I size

e For usual images: a good function would be a one
which responds to contrast (sharp local intensity
change)

- Functions for determining scale Jf = Kernel: Image

Kernels:
L=o (Gn(x,y, o)+ Gw(x,y,cr))
(Laplacian)

DoG = G(x, v, ko) —G(x, v, o)
(Difference of Gaussians)

where Gaussian .

P

X +_}'

- 3 Note: both kernels are invariant
G(x.v.0)=—+———e 2°

>TOo to scale and rotation




det M = A A
trace M = /A + A,

trace

...........

-

1 i L o
3 L] 3 G r

aeale

From Lindeberg 1998




Scale Invariant Detectors

scale

» Harris-Laplacian? A
Find local maximum of: /
-

— Harris corner detector in
space (image coordinates) / A~

— Laplacian in scale

< Laplacian —

— Harris —

o SIFT (Lowe)? <cale
Find local maximum of: L / .

— Difference of Gaussians in space

and scale / P
A

— DoG —

G '—

AAREAAA

O

D

- §




Scale Invariant Detection:
Summary

* Given: two images of the same scene with a large
scale difference between them

* Goal: find the same interest points independently
In each image

* Solution: search for maxima of suitable functions
in scale and in space (over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris' measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and
space




How to achieve mvariance 1n image matching

Two steps:
1. Make sure your feature defector 1s imnvariant
* Harris 1s invariant to translation and rotation
* Scale 1s trickier
— common approach is to detect features at many scales using a
Gaussian pyramid (e.g.. MOPS)
— More sophisticated methods find “the best scale™ to represent each
feature (e.g.. SIFT)
2. Design an invariant feature descriptor

* A descriptor captures the intensity mnformation m a region around
the detected feature point
* The sumplest descriptor: a square window of pixels
— What’s this mnvariant to?

« Let’s look at some better approaches...




