

Lec. 7

Image Segmentation

Assist. Prof. Dr. Saad Albawi

Segmentation

- Partitioning image into homogeneous regions with respect to some characteristic
 - Gray level, texture, color, motion, context (foreground, background)
- Useful mid-level representation of an image
- Facilitates computer vision tasks

• • Examples

- (a) A hard image to segment due to uneven lighting, projected shadows, and occlusion among objects
- (b) Grayscale of (a). Segmentation of this image is even harder (even impossible with some methods)
- (c) An image easy to segment.

• • Applications

- Object recognition
- Image annotation
- Video summarization
- Background subtraction
- Medical Imaging
- Image compression

Regions and Edges

- Regions are found based on SIMILARITIES between values of adjacent pixels
 - We could "trace" regions to obtain edges

- Edges are found based on DIFFERENCES between values of adjacent pixels
 - We could "fill" closed contours to obtain regions

• • Strategies

- Top-down segmentation
 - Pixels belong together because they come from the same object
- Bottom-up segmentation
 - Pixels belong together because they look similar

• • Over & Under Segmentation

• • Segmentation Techniques

- Intensity-based (non-contextual): based on pixel distributions (i.e., histograms).
- Region-based (contextual): rely on adjacency and connectivity criteria between a pixel and its neighbors.
 - Region growing
 - Region splitting

Intensity-Based Segmentation

Intensity-Based Segmentation

 Rely on pixel statistics (histogram properties) to determine which pixels belong to "foreground" objects and which pixels should be labeled as "background."

By Oge Marques

Copyright @ 2011 by John Wiley & Sons, Inc. All rights reserved.

• • Image Thresholding

• This is usually performed by comparing each pixel intensity against a reference value (threshold) and replacing the pixel with a value (say 1 or 0) that means "foreground" or "background" depending on the outcome of the comparison.

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$

- In particular we will look at:
 - What is thresholding?
 - Simple thresholding
 - Single value thresholding can be given mathematically as follows:

$$g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T \\ 0 & \text{if } f(x, y) \le T \end{cases}$$

- How to Choose T? Based on the histogram of an image. Partition the image histogram using a single global threshold
- The success of this technique very strongly depends on how well the histogram can be partitioned

= 0.4947Global Thresholding T = 0.251600 1400 1200 1000 800 600 400 200 0.2 0.4 By Oge Marques Copyright @ 2011 by John Wiley & Sons, Inc. All rights reserved.

Thresholding Method

- The basic global threshold, T, is calculated as follows:
 - Select an initial estimate for T (typically the average grey level in the image)
 - Segment the image using T to produce two groups of pixels: G₁ consisting of pixels with grey levels >T and G₂ consisting pixels with grey levels ≤ T
 - 3. Compute the average grey levels of pixels in G_1 to give μ_1 and G_2 to give μ_2

4. Compute a new threshold value:

$$T_{new} = \frac{\mu_1 + \mu_2}{2}$$

- Repeat steps 2 4 until the difference in T in successive iterations is less than a predefined limit T_∞
- This algorithm works very well for finding thresholds when the histogram is suitable

Image Thresholding and Illumination

Even easy images may become hard to segment

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • Image Thresholding and Noise

Even easy images may become hard to segment

Gaussian noise with zero mean and variance 0.03.

Histogram lost its bimodal shape.

Result of segmentation with T = 0.25.

By Oge Marques

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • Local Thresholding

- Threshold blocks of pixels, one block at a time.
 - If the blocks that are too small: large computational cost.
 - If the blocks that are too large: results may not be substantially better than the ones obtained with global thresholding.

Global Thresholding: When does it work?

FIGURE 10.28

(a) Original image. (b) Image histogram. (c) Result of global thresholding with T midway between the maximum and minimum gray levels.

• • Local Thresholding Example

Global thresholding

Local thresholding

Global Thresholding: When does it not work?

- A meaningful global threshold may not exist
- Uneven illumination can really upset a single valued thresholding scheme
- Image-dependent

True object boundary

Thresholding

$$T = 4.5$$

0	0	0	0	Q	0	0	0	1	1
0	0	0	0	1	9	0	0	1	1
0	0	9	1	1	1	9	0	1	1
0	0	1	1	1	1	1	d	1	1
0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	1	1	1	0	V	1	1	1	1
0	1	1	8	0	0	1	1	1	1
0	1	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	J	1

Thresholding

$$T = 5.5$$

0	0	0	(0	0	0	0	0	0	0
0	0	0	(0	1	0	þ	0	0	0
0	0	0	,	1	1	1	0	0	0	0
0	0	1	•	1	1	1	1	0	6	9
0	0	1	I	ſ	1	1	1	1	0	0
0	0	1		Г	1	1	1	1	0	0
* 0	0	1			0	1	1	1	0	0
0	0	1)	0	0	Ż	1	0	0
0	0	0)	0		0		0	0
0	0	0				0	0	0	×	0
									1	

Adaptive Thresholding Method

- An approach to handling situations in which single value thresholding will not work is to divide an image into sub images and threshold these individually
- Since the threshold for each pixel depends on its location within an image this technique is said to adaptive

Improvement over Global Solution

- Spatially adaptive thresholding
- Localized processing

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1

spatially adaptive threshold selection

Thresholding

$$T = 4$$

Threshold	ing
-----------	-----

$$T = 7$$

0	0	0	0	0
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	0	0

1	1	2	2	3
1	1	2	2	8
1	1	2	7	8
1	1	6	7	8
1	5	6	7	8

3	4	4	5	5
3	4	4	5	5
9	4	4	5	5
9	10	4	5	5
9	10	11	5	5

1	5	6	7	8	
1	5	6	7	3	
1	5	6	2	3	
1	5	2	2	3	
1	1	2	2	3	

9	10	11	5	5
9	10	11	5	5
3	10	11	5	5
3	4	11	5	5
3	4	4	5	5

Thresholding

$$T = 4$$

Thresholding

$$T = 7$$

1	1	1	0	0
1	1	1	0	0
0	1	1	0	0
0	0	1	0	0
0	0	0	0	0

• • Limitations of Thresholding

- Operates on each image pixel independently.
 - Pixels must have similar values.
- Spatial coherency cannot be satisfied.
 - Pixels do not have to be connected.

Region-based Segmentation

• • Region-based Segmentation

- A pixel cannot be considered a part of an object based solely on its gray value.
- Incorporates measures of connectivity among pixels in order to decide whether those pixels belong to the same region (or object).

• • Region-Based Segmentation

Divide an image *I* into *n* regions R_1 , R_2 , ..., R_n such that:

1.
$$\bigcup_{i=1}^{n} R_i = I$$

- 2. R_i is a connected region, $i = 1, 2, \dots, n$.
- 3. $R_i \cap R_j = \emptyset$ for all i and j, $i \neq j$.
- 4. $P(R_i) = \text{TRUE for } i = 1, 2, \dots, n.$
- 5. $P(R_i \cup R_j) = \text{FALSE}$ for any adjacent regions R_i and R_j .

where $P(R_i)$ is a logical predicate defined over the points in set R_i and \emptyset is the empty set.

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

• • Region-Based Segmentation

- Logical predicates (also called *homogeneity* criteria) include:
 - Local mean relative to global mean: the average intensity in a region is significantly different than the average gray level in the whole image.
 - Local standard deviation relative to global mean: The standard deviation of the pixel intensities in a region is less than a small percentage of the average gray level in the whole image.
 - Variance: At least a certain percentage of the pixels in a region are within two standard deviations of the local mean.

• • Region Growing Algorithm

```
Let f(x,y) be the input image
Define a set of regions R1, R2, ..., Rn, each consisting of a
          single seed pixel
repeat
   for i = 1 to n do
      for each pixel p at the border of Ri do
         for all neighbors of p do
            Let (x,y) be the neighbor's coordinates
            Let Mi be the mean gray level of pixels in Ri
            if the neighbor is unassigned and
                      |f(x,y) - Mi| \le Delta then
               Add neighbor to Ri
               Update Mi
            end if
         end for
      end for
   end for
until no more pixels can be assigned to regions
```

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Region Growing

- Start from a seed, and let it grow (include similar neighborhood)

a b c d

FIGURE 10.40

(a) Image showing defective welds. (b) Seed points. (c) Result of region growing. (d) Boundaries of segmented defective welds (in black). (Original image courtesy of X-TEK Systems, Ltd.).

Key: similarity measure

• • Region-Growing Example

$$P(R_i) = \begin{cases} \text{TRUE} & \text{if } |f(x,y) - \mu_i| \leq \Delta \\ \text{FALSE} & \text{otherwise} \end{cases}$$

6	7	7	6	5
7	7	8	6	5
5	5	6	7	6
0	1	2	0	1
1	0	0	2	0

Seed pixels

6	7	7	6	5
7	7	8	6	5
5	5	6	7	6
0	1	2	0	1
1	0	0	2	0

Results after first iteration, delta = 3

Results after second iteration

• • Region Growing Limitations

- Significantly different results may be obtained when switching between 4-connectivity and 8-connectivity criteria.
- Segmentation results are sensitive to the choice of logical uniformity predicate.
- The number of seeds provided by the user may not be sufficient to assign every pixel to a region, or some may belong to the same region.

Region Splitting and Merging

 Start from the entire image and partition (split) it into smaller sub-images until each resulting region is considered homogeneous by some criterion.

 Merge two or more adjacent regions into one region if they satisfy the homogeneity criterion.

• • Region Splitting and Merging

- 1. Define a logical uniformity predicate $P(R_i)$.
- 2. Compute $P(R_i)$ for each region.
- 3. Split into four disjoint quadrants any region R_i for which $P(R_i) = \text{FALSE}$.
- 4. Repeat steps 2 and 3 until all resulting regions satisfy the uniformity criterion, i.e., $P(R_i) = \text{TRUE}$.
- 5. Merge any adjacent regions R_j and R_k for which $P(R_j \cup R_k) = \text{TRUE}$.
- Repeat step 5 until no further merging is possible.

• • Region Splitting and Merging

Region Splitting and Merging Segmentation

Algorithm:

- If a region R is inhomogeneous (P (R)=FALSE), then R is split into four sub-regions.
- If two adjacent regions R_i,R_j are homogeneous (P(R_iUR_j)=TRUE), they are then merged.
- The algorithm stops when no further splitting or merging is possible.

Region Splitting and Merging Segmentation

Example:

Apply the split and merge technique to segment the image shown in fig. below.

Region Splitting and Merging Segmentation

Example:

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

Region Splitting and Merging Segmentation

1	1	1	1	1	1	1	2
रे 1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8		4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

Second split Third split

min=1

y max=4

I min=1

y max=4

Region Splitting and Merging Segmentation

1	1	1	1	1	1	1	2
1	P	1	1	1	1	1	0
3		4					0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

Merge Final result

Hard Problem: Textures

Similarity measure makes the difference