
Embedded Systems
4th Stage

Lecture Six

Assist. Prof. Dr. Yasir Amer Abbas

Computer Engineering Department

2022

Embedded System Software

Lecture Six

3

6. Embedded System Software

Introduction
Not all components of embedded systems need to be designed from scratch. Instead, there are
standard components that can be reused. These components comprise knowledge from earlier
design efforts and constitute intellectual property (IP). IP reuse is one key technique in coping with
the increasing complexity of designs. The term “IP reuse” frequently denotes the reuse of hardware.
However, reusing hardware is not enough. The software components need to be reused as well.
Therefore, the platform-based design methodology advocated comprises the reuse of hardware
and software IP.

Fig. 1 Simplified design information flow

4

6. Embedded System Software

Introduction
Standard software components that can be reused include system software components such as
embedded operating systems (OSs) and middleware.
The last term denotes software that provides an intermediate layer between the OS and
application software. We include libraries for communication as a special case of middleware.
Such libraries extend the basic communication facilities provided by operating systems. Also, we
consider real-time databases to be a second class of middleware. Calls to standard software
components may already need to be included in the specification. Therefore, information about the
application programming interface (API) of these standard components may already be needed for
completing executable specifications.

5

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
An embedded operating system (OS) is a specialized operating system designed to perform a
specific task for a device that is not a computer.
An embedded operating system’s main job is to run the code that allows the device to do its job. The
embedded OS also makes the device’s hardware accessible to the software that is running on top of
the OS.

6

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
Except for very simple systems, scheduling, context
switching, and I/O require the
support of an operating system suited for embedded
applications. Context switching algorithms multiplex
processors such that each process seems to have its own
processor.
For systems with virtual addressing, we can distinguish
between different address spaces and between processes
and threads. Each process has its own address space,
whereas several threads may share an address space.
Context switches which change the address space require
more time than those which do not. Threads sharing an
address space will typically communicate via shared
memory. Operating systems must provide communication
and synchronization methods for threads and processes.

7

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
The essential features of embedded operating systems:
Due to the large variety of embedded systems, there is also a large variety of requirements for the
functionality of embedded OSs. Due to efficiency requirements, it is not possible to work with OSs
which provide the union of all functionalities.
For most applications, the OS must be small. Hence, we need operating systems which can be
flexibly tailored toward the application at hand. Configurability is therefore one of the main
characteristics of embedded OSs. There are various techniques of implementing configurability,
including

1. Object orientation.
2. Aspect-oriented programming
3. Conditional compilation.
4. Advanced compile-time evaluation.
5. Linker-based removal of unused functions.

8

4. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
The essential features of embedded operating systems:

There is a large variety of peripheral devices employed in embedded systems. Many embedded
systems do not have a hard disk, a keyboard, a screen, or a mouse.

There is effectively no device that needs to be supported by all variants of the OS, except maybe the
system timer. Frequently, applications are designed to handle particular devices. In such cases,
devices are not shared between applications, and hence, there is no need to manage the devices by the
OS. Due to the large variety of devices, it would also be difficult to provide all required device
drivers together with the OS. Hence, it makes sense to decouple OS and drivers by using special
processes instead of integrating their drivers into the kernel of the OS. Due to the limited speed of
many embedded peripheral devices, there is also no need for an integration into the OS in order
to meet performance requirements. This may lead to a different stack of software layers.

9

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
The essential features of embedded operating systems:
For PCs, some drivers, such as disk drivers, network drivers, or audio drivers, are implicitly
assumed to be present. They are implemented at a very low level of the stack. The application
software and middleware are implemented on top of the application programming interface, which is
standard for all applications.
For an embedded OS, device drivers are implemented on top of the kernel. Applications and
middleware may be implemented on top of appropriate drivers, not on top of a standardized API of
the OS (see Fig. 2). Drivers may even be included in the application itself.

Fig. 2

10

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.1 General Requirements
The essential features of embedded operating systems:
Protection mechanisms are sometimes not necessary, since embedded systems are sometimes designed
for a single purpose (they are not supposed to support so-called multiprogramming). Untested programs
have traditionally hardly ever been loaded. After the software has been tested, it could be assumed to be
reliable. This also applies to input/output. In contrast to desktop applications, it is possibly not always
necessary to implement I/O instructions as privileged instructions and processes can sometimes be allowed
to do their own I/O. This matches nicely with the previous item and reduces the overhead of I/O operations.
Interrupts can be connected to any thread or process. Using OS service calls, we can request the OS to
start or stop them if certain interrupts happen. We could even store the start address of a thread or process in
the interrupt vector address table, but this technique is very dangerous, since the OS would be unaware of
the thread or process actually running. Also composability may suffer from this: If a specific thread is
directly connected to some interrupt, then it may be difficult to add another thread which also needs to be
started by some event. Application specific device drivers (if used) might also establish links between
interrupts and threads and processes.

•

11

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.2 Real-Time Operating Systems
Many embedded systems are real-time (RT) systems, and hence, the OS used in these systems must
be a real-time operating system (RTOS). Real-time operating system is an operating system that
supports the construction of real-time systems.
What does it take to make an OS an RTOS? There are four key requirements:
A. The timing behaviour of the OS must be predictable.

For each service of the OS, an upper bound on the execution time must be guaranteed. In
practice, there are various levels of predictability. For example, there may be sets of OS service
calls for which an upper bound is known and for which there is not a significant variation of the
execution time. Calls like “get me the time of the day” may fall into this class. For other calls, there
may be a huge variation. Calls like “get me 4MB of free memory” may fall into this second class. In
particular, the scheduling policy of any RTOS must be deterministic.
There may also be times during which interrupts must be disabled to avoid interferences between
components of the OS. Less importantly, they can also be disabled to avoid interferences between
processes. The periods during which interrupts are disabled must be quite short in order to avoid
unpredictable delays in the processing of critical events. For RTOSs implementing file systems still
using hard disks, it may be necessary to implement contiguous files (files stored in contiguous disk
areas) to avoid unpredictable disk head movements.

12

4. Embedded System Software

6.1 Embedded Operating Systems
6.1.2 Real-Time Operating Systems
B. Some systems require the OS to manage time.

The OS must manage the scheduling of threads and processes. Scheduling can be defined as
mapping from sets of threads or processes to intervals of execution time (including the mapping to
start times as a special case) and to processors (in case of multiprocessor systems).
Also, the OS possibly has to be aware of deadlines so that the OS can apply appropriate scheduling
techniques. There are, however, cases in which scheduling is done completely off-line, and the OS
only needs to provide services to start threads or processes at specific times or priority levels.

13

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.2 Real-Time Operating Systems
C. The OS must manage the scheduling of threads and processes.
This management is mandatory if internal processing is linked to an absolute time in the physical
environment. Physical time is described by real numbers. In computers, discrete time standards are typically
used instead. The precise requirements may vary:
1. In some systems, synchronization with global time standards is necessary. In this case, global clock

synchronization is performed. Two standards are available for this:
– Universal Time Coordinated (UTC): UTC is defined by astronomical standards. Due to variations
regarding the movement of the earth, this standard has to be adjusted from time to time.
– International atomic time: This standard is free of any artificial artifacts. Some connection to the
environment is used to obtain accurate time information. External synchronization is typically based on
wireless communication standards such as the global positioning system (GPS) or mobile networks.
2. If embedded systems are used in a network, it is frequently sufficient to synchronize time information
within the network. Local clock synchronization can be used for this. In this case, connected embedded
systems try to agree on a consistent view of the current time.
3. There may be cases in which provision for precise local delays is all that is needed.

14

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.2 Real-Time Operating Systems
D. The OS must be fast. An operating system meeting all the requirements mentioned so far would be useless
if it were very slow. Therefore, the OS must obviously be fast.
Each RTOS includes a so-called real-time OS kernel. This kernel manages the resources which are found in
every real-time system, including the processor, the memory, and the system timer. Major functions in the
kernel include the process and thread management, inter-process synchronization and communication, time
management, and memory management.

E. Fast proprietary kernels: According to Gupta, “for complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be predictable in every respect.” Examples include QNX,
PDOS, VCOS, VTRX32, and VxWorks.

F. Real-time extensions to standard OSs: In order to take advantage of comfortable mainstream operating
systems, hybrid systems have been developed. For such systems, there is an RT-kernel running all RT-
processes.

15

RT-kernel running all RT-processes.

16

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.3 Virtual Machines
In certain environments, it may be useful to emulate several processors on a single real processor. This is
possible with virtual machines executed on the bare hardware. On top of such a virtual machine, several
operating systems can be executed. Obviously, this allows several operating systems to be run on a single
processor. For embedded systems, this approach has to be used with care since the temporal behaviour of such
an approach may be problematic and timing predictability may be lost. Nevertheless, sometimes this approach
may be useful. For example, we may need to integrate several legacy applications using different operating
systems on a single hardware processor. A full coverage of virtual machines is beyond the scope of this
lecture. PikeOS is an example of a virtualization concept dedicated toward embedded systems. PikeOS allows
the system’s resources (e.g., memory, I/O devices, CPU-time) to be divided into separate subsets. PikeOS
comes with a small micro-kernel. Several operating systems, application programming interfaces (APIs), and
run-time environments (RTEs) can be implemented on top of this kernel (see Fig. 3)

17

6. Embedded System Software

6.1 Embedded Operating Systems
6.1.3 Virtual Machines

Fig. 3PikeOS virtualization (©SYSGO)

18

6.2 Erika
Erika Enterprise is the first open-source Free RTOS that has been certified OSEK/VDX (open systems
and the corresponding interfaces for automotive electronics) compliant

Main Features:
Hard Real-Time support with Fixed Priority Scheduling and
Immediate Priority Ceiling;
Support for Earliest Deadline First (EDF) and Resource Reservation
Schedulers;
1-4 Kb Flash footprint, suitable for 8 to 32 bit microcontrollers;
Support for multi-core platforms;
Support for stack sharing among tasks;
Easy configuration using RT-Druid with Eclipse plugins;

19

• Hardware abstraction layers (HALs) provide a way for
accessing hardware through a hardware-independent
application programming interface (API). For example, we
could come up with a hardware-independent technique for
accessing timers, irrespective of the addresses to which timers
are mapped. Hardware abstraction layers are used mostly
between the hardware and operating system layers. They
provide software intellectual property (IP), but they are
neither part of operating systems nor can they be classified as
middleware

Hardware abstraction layers

20

• Communication libraries provide a means for adding communication functionality to
languages lacking this feature. They add communication functionality on top of the basic
functionality provided by operating systems. Due to being added on top of the OS, they
can be independent of the OS (and obviously also of the underlying processor hardware).
As a result, we will obtain communication-oriented cyberphysical systems. Such
communication is needed for the Internet of Things (IoT). There is a trend toward
supporting communication within some local system as well as communication over
longer distances. The use of Internet protocols in general is becoming more popular.
Frequently, such protocols enable secure communication, based on en- and decryption .
The corresponding algorithms are a special case of middleware.

• Middleware

21

Databases provide a convenient and structured way of storing and accessing information. Accordingly,
data bases provide an API for writing and reading information. A sequence of read and write operations is
called a transaction. Transactions may have to be aborted for a variety of reasons: there could be hardware
problems, deadlocks, problems with concurrency control, etc. A frequent requirement is that transactions
do not affect the state of the database unless they have been executed to their very end. Hence, changes
caused by transactions are normally not considered to be final until they have been committed. Most
transactions are required to be atomic. This means that the end result (the new state of the database)
generated by some transaction must be the same as if the transaction has been fully completed or not at
all. Also, the database state resulting from a transaction must be consistent. Consistency requirements
include, for example, that the values from read requests belonging to the same transaction are consistent
(do not describe a state which never existed in the environment modeled by the database). Furthermore, to
some other user of the database, no intermediate state resulting from a partial execution of a transaction
must be visible (the transactions must be performed as if they were executed in isolation). Finally, the
results of transactions should be persistent. This property is also called durability of the transactions.
Together, the four properties printed in bold are known as ACID properties

Real-Time Databases

THANK YOU

Assit. Prof. Dr. Yasir Amer Abbas

Phone

Email dr.yasiralzubaidi@gmail.com, yasiramerabbas@gmail.com

Website https://www.researchgate.net/profile/Yasir_Abbas4

