
Logic Gate Design using Perceptron ANN with Bias 
 
 

1. AND Gate 
 
The model to achieve an AND gate, using the Perceptron algorithm is: 
x1+x2–1 

 

 
 

2. OR Gate 
 
The model to achieve an OR gate, using the Perceptron algorithm is: 
2x1+2x2–1 

 
 

 
 

3. NOT Gate 
 
The model to achieve a NOT gate, using the Perceptron algorithm is:  
–x1+1 

 



 
 

 
 

4. NOR Gate 
 
The model to achieve a NOR gate, using the Perceptron algorithm is: 
 -x1-x2+1 
 

 
 

5. NAND Gate 
 
The model to achieve a NAND gate, using the Perceptron algorithm is: 

           -x1-x2+2 
 

 



6. XNOR Gate 
 

Single layer Perceptron can’t be directly used to implement XOR and XNOR 
gates. Because both of XOR and XNOR are not linearly separable. But we can 
combine the basic gates AND, OR, NAND, NOR, NOT to produce an XOR and 
XNOR gate.  
The boolean representation of an XNOR gate is: x1x2 + x1`x2` 

            
From the expression, we can say that the XNOR gate consists of an AND 
gate (x1x2) a NOR gate (x1`x2`) and an OR gate. This means we will 
have to combine 3 Perceptrons: 

• AND (x1+x2–1) 

• NOR (-x1-x2+1) 

• OR (2x1+2x2–1) 
 

 
 
 
 
 
 
 
 
 
 



7. XOR Gate 

           The boolean representation of an XOR gate is; 

x1x`2 + x`1x2 

We first simplify the boolean expression 

x`1x2 + x1x`2 + x`1x1 + x`2x2 

x1(x`1 + x`2) + x2(x`1 + x`2) 

(x1 + x2)(x`1 + x`2) 

(x1 + x2)(x1x2)` 

This means we will have to combine 3 perceptrons: 

• OR (2x1+2x2–1) 

• NAND (-x1-x2+2) 

• AND (x1+x2–1) 
 

 
 



Summary of Learning Rules 
  

 
 
Learning Rate: 
 
Learning rate (C) is a hyper-parameter that controls how much we are adjusting the weights of 
our network with respect the loss gradient. The lower the value, the slower we travel along the 
downward slope. While this might be a good idea (using a low learning rate) in terms of making 
sure that we do not miss any local minima, it could also mean that we’ll be taking a long time to 
converge. 

 



 

Hebbian Learning Rule 
 
For the Hebbian learning rule the learning signal is equal simply to the 
neuron's output (Hebb 1949). 

 
 
This learning rule requires the weight initialization at small random 
values around wi = 0 prior to learning. The Hebbian learning rule 
represents a purely feedforward, unsupervised learning. 
 

 
 

 
 



 

 



 

            Given the following continuous activation function  

𝑓(𝑛𝑒𝑡) =
2

1 + 𝑒+,-./
− 1	 

 
 



 

Ex/ Implement logical AND function with bipolar inputs using Hebbian Learning. X1 and X2 
are inputs, b is the bias taken as 1, the target value is the output of logical AND operation over 
inputs. 

 

 


