Logic Gate Design using Perceptron ANN with Bias

1. AND Gate

The model to achieve an AND gate, using the Perceptron algorithm is:
X1+x2—1

2. OR Gate

The model to achieve an OR gate, using the Perceptron algorithm is:
2x1+2x2—1

2

3. NOT Gate

The model to achieve a NOT gate, using the Perceptron algorithm is:
—X1+1

4. NOR Gate

The model to achieve a NOR gate, using the Perceptron algorithm is:
-X1-X2+1

5. NAND Gate

The model to achieve a NAND gate, using the Perceptron algorithm is:
-X1-x2+2

6.

XNOR Gate

Single layer Perceptron can’t be directly used to implement XOR and XNOR
gates. Because both of XOR and XNOR are not linearly separable. But we can
combine the basic gates AND, OR, NAND, NOR, NOT to produce an XOR and
XNOR gate.

The boolean representation of an XNOR gate is: X1X2 + X1 X2

From the expression, we can say that the XNOR gate consists of an AND

gate (X1X2) a NOR gate (X1 X2 ") and an OR gate. This means we will
have to combine 3 Perceptrons:

AND (x1+x2-1)
NOR (-x1-x2+1)

OR (2x1+2x2-1)

7. XOR Gate

The boolean representation of an XOR gate is;

XI1x 2 4+ x '1x2

We first simplify the boolean expression

X'1x2 + x1x 2 + x '1x1 + x "2x2

xi(x'1+x°2)+x2(x'1+x2)

(x1 +x2)(x'1+x'2)

(x1 + x2)(x1x2)"

This means we will have to combine 3 perceptrons:

o OR (2x1+2x2-1)
o« NAND (-x1-x2+2)
o AND (x1+x2-1)

Summary of Learning Rules

Summary of learning rules and their properties.

Single weight
Learning adjustment Initial Neuron Neuron
rule Awj weights Learning characteristics / Layer
Hebbian co;ix; 0 U Any Neuron
=12, ...,n

Perceptron c [d,- — sgn (wfx)] Xj Any S Binary Neuron

j=1,2,...,n bipolar, or

Binary

unipolar*

Delta c(d; — o)) f(net))x; Any S Continuous Neuron

Ji= By 25 v

Widrow-Hoff c(d; — wix)x; Any S Any Neuron
j=1,2,...,n

Correlation cdix; 0 S Any Neuron
j=1,2,...,n

Winner-take-all Awmj = alxj — Wp) Random U Continuous Layer of
m-winning neuron Normalized p neurons
number

ji=12....n

Outstar B(d; — wy)) 0 S Continuous Layer of
i=1,2,...,p p neurons

¢, a, B are positive learning constants
§—supervised learning, U — unsupervised leamning

Learning Rate:

Learning rate (C) is a hyper-parameter that controls how much we are adjusting the weights of
our network with respect the loss gradient. The lower the value, the slower we travel along the
downward slope. While this might be a good idea (using a low learning rate) in terms of making
sure that we do not miss any local minima, it could also mean that we’ll be taking a long time to
converge.

N j(e\

d
6y :=6) — J(0
1 1 @(E (l)

If ais too small, gradient descent /7

can be slow.

v

Tis\)

If ais too large, gradient descent
can overshoot the minimum. It may —~
fail to converge, or even diverge.
e et

Hebbian Learning Rule

For the Hebbian learning rule the learning signal is equal simply to the
neuron's output (Hebb 1949).

Aw = cox;, forj=1, 2, ..., 1

’
This learning rule requires the weight initialization at small random
values around wi = 0 prior to learning. The Hebbian learning rule
represents a purely feedforward, unsupervised learning.

This example illustrates Hebbian learning with binary and continuous acti-
vation functions of a very simple network. Assume the network shown in
Figure 2.22 with the initial weight vector

1
=1
l =
v 0
0.5
needs to be trained using the set of three input vectors as below
1 1 0
X = 2 < = -0.5 X = |
: LS |7 TEF T =g [TR
0 =13 L5

for an arbitrary choice of learning constant ¢ = 1. Since the initial weights
are of nonzero value, the network has apparently been trained before-
hand. Assume first that bipolar binary neurons are used, and thus f(ner) =
sgn (net).

X5

Initial
Input weights

Step 1 Input x, applied to the network results in activation net' as below:

1
-2
net' =w'x; =[1 -1 0 05]| 7.|=3

0

The updated weights are

w? = w' + sgn(net')x, = w' +x,

and plugging numerical values we obtain

1 1 2
»_ | -1 -2 | _|-3
w o | T1] 15 1.5

0.5 0 0.5

where the superscript on the right side of the expression denotes the
number of the current adjustment step.

Step 2 This learning step is with x, as input:

1
net? = whx, = [2 =3 1.5 0.5] :(2)'5 = —0.25
—-1.5
The updated weights are
1
w3 = w? + sgn(ner’)x, = w?> — x, = "gg
2
Step 3 For input x;, we obtain in this step
0
net’ = w'x; =[1 —-25 35 2] _} -3
1.5

The updated weights are

1
4 3 —-3.5
W =W +sgn(net3)x3=w3—x3= 45
0.5
It can be seen that learning with discrete f(net) and ¢ = 1 results in

adding or subtracting the entire input pattern vectors to and from the weight
vector, respectively. In the case of a continuous f(ner), the weight incre-
menting / decrementing vector is scaled down to a fractional value of the
input pattern.

Revisiting the Hebbian learning example, with continuous bipolar ac-
tivation function f(net), using input x, and initial weights w', we obtain
neuron output values and the updated weights for A = 1 as summarized in
Step 1. The only difference compared with the previous case is that instead
of f(net) = sgn (net), now the neuron’s response is computed from (2.3a).

Given the following continuous activation function

2
f(net) = 15 odmnet ~ 1

Step 1
f(net') = 0.905
1.905
2 _ | —2.81
1.357
0.5
Subsequent training steps result in weight vector adjustment as below:
Step 2
f(ne?) = —0.077
1.828
3 _ | 2772
1.512
0.616
Step 3
f(ner’) = —0.932
1.828
wh = -3.70
2.44

—0.783

Ex/ Implement logical AND function with bipolar inputs using Hebbian Learning. X1 and X2
are inputs, b is the bias taken as 1, the target value is the output of logical AND operation over
inputs.

#1) Initially, the weights are set to zero and bias is also set as zero.
W1i=w2=b=0
#2) First input vector is taken as [x1 x2 b] = [111] and target value is 1.

The new weights will be:

W (new) = w (old) +x*y

Wi1(n)=wl(o) +x1*y=0+1*1=1

W2(n)=w2 (o) +x2*y=0+1*1=1

B(n)=b(o) +y=0+1=1

The change in weights is: Awl=x1*y =1 Aw2=x2 *y =1Ab=y =1

#3) The above weights are the final new weights. When the second input is passed, these become the
initial weights.

#4) Take the second input = [1 -11]. The target is -1.

The weights vector is= [wlw2 b]=[11 1]
Thechange is weightsis: Awl=x1 *y =-1 Aw2=x2 *y=1 Ab=y=-1
The new weights will bewl (n)=wl+Awl =>1+(-1) =0
W2 (n)=w2+Aw2 =>1+(1)=2
B(n)=b+Ab =>1+(-1)=0

#5) Similarly, the other inputs and weights are calculated.

Inputs Bias Target Output Weight Changes Bias Changes New Weights

X1 X2 b y ?wi w2 ?b W1 W2 b
1 1 1 1 1 1 1 1 1 1

1 -1 01 -1 -1 1 -1 0 2 0
-1 1 1 -1 1 -1 -1 1 1 -1
-1 11 -1 1 1 -1 2 2 -2

i) O

