Perceptron Learning Rule

For the perceptron learning rule, the learning signal is the difference
between the desired and actual neuron's response (Rosenblatt 1958).
This example illustrates the perceptron learning rule of the network
shown in Figure. The set of input training vectors is as follows where:

dl=-1,d2=-1,d3=1,C=0.1, W'=[1-100.5]

1 0 =l
X, = =2 X, = 1.5 XZ = 1
0’ -05|°> ™3 0.5
-1 -1 |
Step 1 Input is x,, desired output is d,:
1
net' =wh'x; =[1 -1 0 05] —é =25

-1
Correction in this step is necessary since d; # sgn(2.5). We thus obtai
updated weight vector

wr=w +0.1(-1 - x,

Plugging in numerical values we obtain

1 1 0.8

2 _ |1 _ =2 _ |06
w 0 0.2 0 0

0.5 -1 0.7

Step 2 Input is x,, desired output is d,. For the present weight vector w?
we compute the activation value ner? as follows:

0.8
ne? = whx, = [0 15 —05 -1]| 00| =-16

0.7
Correction is not performed in this step since d, = sgn(—1.6)

Step 3 Input is x,, desired output is d;, present weight vector is w>.
Computing net> we obtain:

0.8
—-0.6

-1] 0
0.7

net =w'x;=[-1 1 05 = —2.1

Correction is necessary in this step since dy # sgn(—2.1). The updated
weight values are

=w +0.1(1+ 1)y
or
08 -1 06
.| -06 1| _|-04
=10 102 as| T o
07 -1 05

a Example

ConS|der the 2-dimensional training set C, U C,,

={(1,1,1), (1,1, -
={(1,-1

Train a perceptron on C, U C,

1), (1, 0, -1)} with class label 1

-1, (1,-1,1), (1, 0,1)} with class label 0

- First pass is as follows

‘Input Weight Desired Actual Update? New
weight
(1,1,1) | (1,0,0) 1 1 No (1,0, 0)
(1,1,-1)] (1,0,0) 1 1 No (1,0, 0)
(1,0,-1) | (1,0, 0) 1 1 No (1,0, 0)
(1,-1,-1)| (1,0, 0) 0 1 Yes (0,1,1)
(1-1,1)] (0,1,1) 0 0 No (0,1, 1)
(1,0,1) | (0,1,1) 0 1 Yes (-1,1,0)

ﬁ Example

c1. {(1,1,1),(1,1,-1),(1,0,-1)}
cz2: {(1,-1,-1),(1,-1,1),(1,0,1)}

Fill out this table sequentially (Second pass):

Weight Desired Actual Update? New
(1,1,1) [(-1,1,0) 1 0 Yes (0,2,1)
(1,1,-1) 1 (0,2, 1) 1 1 No 0,2, 1)
(1,0,-1) 1 (0,2, 1) 1 0 Yes (1,2,0)
(1,-1,-1) | (1,2,0) 0 0 No (1,2, 0)
(1,-1,1) | (1,2,0) 0 0 No (1, 2, 0)
(1,0,1) | (1,2,0) 0 1 Yes (0, 2, -1)
C1. {(1!1’1)5 (1’1"1)’(1!0"1)}
cz2. {(1,-1,-1),(1,-1,1),(,0,1)}
Fill out this table sequentially (Third pass):
Input Weight Desired Actual Update? New
weight
(1,1,1) [(0,2, -1) 1 1 No (0,2, -1)
(1,1,-1)1(0, 2, -1) 1 1 No (0,2,-1)
(1,0,-1) 1 (0, 2, -1) 1 1 No 0,2, -1)
(1,-1,-1) 1 (0, 2,-1) 0 0 No (0,2, -1)
(1,-1,1) 1 (0,2, -1) 0 0 No (0,2, -1)
(1,0,1) [(0,2, 1) 0 0 No 0,2, -1)

At epoch 3 no weight changes.
= stop execution of algorithm.

Final weight vector: (0, 2, -1).
= decision hyperplane is 2x, - x, = 0.

Delta Learning Rule

The delta learning rule is only valid for continuous activation functions as
defined before, and in the supervised training mode. The adjustment of

learning weight: X3

Mwy = [d; — FWERIF (W)

for this rule is called delta and is defined as follows

Continuous
perception

This example discusses the delta learning rule as applied to the network
shown in Figure. Training input vectors, desired responses, and initial
weights are identical to those in Example. The delta learning requires

2
f(net) = 15 odmet ~ 1

that the value f'(net) be computed in each step.

F(aet) = 21 = o)

Example/
dl=-1,d2=-1,d3=1,C=0.1,1=1
1 0 -1
=2 |15 R
I o 2T -0s|t BT 05

-1 -1 -1

Step 1 Input is vector X,, initial weight vector is w':

net' = w''x, = 2.5
o! = f(net') = 0.848
f'(net*y = %[1 — (0")*] = 0.140
w2 = cd, — ol)f'(m»:’t‘)x1 + w!
=[0974 -0948 0 0.526]
2

Step 2 Input is vector X,, weight vector is w-:
net> = w¥x, = —1.948
o = f(net*) = —0.75
f'(net?) = %[1 — (0%)%*] = 0.218
w? = c(dy — 0H)f' (net®)x, + W

= [0974 -0956 0.002 0.531]

Step 3 Input is x,, weight vector is W’:

nef = w'x, = —2.46
0 = f(nef’) = ~0.842

f'(ner’) = %[1 = (0°] = 0.145
wt= oldy - o) f '(net’)Xq + W

= [0947 -0929 0.016 0.505]

Widrow-Hoff Learning Rule

The Widrow-Hoff learning rule (Widrow 1962) or Adaline is applicable
for the supervised training of neural networks. It is independent of the
activation function of neurons used since it minimizes the squared error
between the desired output value d, and the neuron's activation value,
net = w'x. The learning signal for this rule is defined as follows:

r é d" - W:X
The weight vector increment under this learning rule is

Aw; = c(d; — X)X

Correlation Learning Rule

By substituting r = di into the general learning rule we obtain the correlation
learning rule. The adjustments for the weight vector and the single weights,

respectively are
Awi = Cd,-x

Aw; =cdx;, forj=1,2,...,n

Multi-layer ANN and Backpropagation Learning
Rule

All the aforementioned learning rules work with single neuron ANN but don’t
work with multilayer ANN. A multilayer perceptron (shown in Fig. below) is a
feedforward neural network with one or more hidden layers. Typically, the
network consists of an input layer of source neurons, at least one middle or hidden
layer of computational neurons, and an output layer of computational neurons.
The input signals are propagated in a forward direction on a layer-by-layer basis.

Each layer in a multilayer neural network has its own specific function. The input
layer accepts input signals from the outside world and redistributes these signals
to all neurons in the hidden layer. Actually, the input layer rarely includes
computing neurons, and thus does not process input patterns. The output layer
accepts output signals, or in other words a stimulus pattern, from the hidden layer
and establishes the output pattern of the entire network.

Neurons in the hidden layer detect the features; the weights of the neurons
represent the features hidden in the input patterns. These features are then used by
the output layer in determining the output pattern. With one hidden layer, we can
represent any continuous function of the input signals, and with two hidden layers
even discontinuous functions can be represented.

()—
— ()—

Input signals
Output signals

(O —

First Second
Input hidden hidden Output
layer layer layer layer

Figure: Multilayer perceptron with two hidden layers

The determination of the error is a recursive process which start with the
o/p units and the error is back propagated to the I/p units. Therefore the rule is
called error Back propagation (EBP) or simply Back Propagation (BP). The
weight is changed exactly in the same form of the standard DR

AWij = i) j X
— Wij(t+1)=Wij(t) + 3’; 6_] X
There are two other equations that specify the error signal. If a unite is an o/p
unit, the error signal is given by:-
0=(dj—yj) fj(net j)
Where net j =) wii X +6

The GDR minimize the squares of the differences between the actual and the
desired o/p values summed over the o/p unit and all pairs of I/p and o/p vectors.

The rule minimize the overall error E :ZEp by implementing a gradient
ih B- — (d: —v:)2
descent in E: - where, E, =1/2% i(dj-y;)~.

The BP consists of two phases:-
1- Forward Propagation:-

During the forward phase, the I/p is presented and propagated towards the

o/p.
Pattern Hidden o/p
/—\ —_—) Y’1
» Y,
—_— Yn

2- Backward Propagation:-
During the backward phase, the errors are formed at the o/p and

propagated towards the I/p
() «—

«—

4—6n

/

3- Compute the error in the hidden layer.
1

l+e
f'=y(I-y)
Equation is can rewrite as:-

6; =y(-y)Xdj-yj)

The error signal for hidden units for which there is no specified target

Ify=£f(x)=

X

(desired o/p) is determined recursively in terms of the error signals of the units
to which it directly connects and the weights of those connections:-

That is
SJ = f'(netj)zkf)kwik

8;=yi(l=y{D Sk Wik

B.P learning is implemented when hidden units are embedded between input

and output units.

Convergence

A quantitative measure of the learning is the :Root Mean Square (RMS) error
which is calculated to reflect the "degree" of learning.

Generally, an RMS bellow (0.1) indicates that the net has learned its training
set. Note that the net does not provide a yes /no response that is "correct" or
"incorrect" since the net get closer to the target value incrementally with each
step. It is possible to define a cut off point when the nets o/p is said to match the
target values.

Local minima

/T \eo

\=/

- Convergence is not always easy to achieve because sometimes the net gets

stuck in a "Local minima" and stops learning algorithm.
- Convergence can be represented intuitively in terms of walking about

mountains.

Momentum term

The choice of the learning rate plays important role in the stability of the
process. It is possible to choose a learning rate as large as possible without
leading to oscillations. This offers the most rapid learning. One way to increase
the learning rate without leading to oscillations is to modify the GDR to include
momentum term.

This can be achieved by the following rule:-

Wij (t +1)= Wij (t) +(;6jxi+ oC (le(t)—\NlJ (t -1))

Where oc (0 <oc< 1) is a constant which determines the effect of the past weight

changes on the current direction of movement in weight space.

A "global minima" unfortunately it is possible to encounter a local
minima, avally that is not the lowest possible in the entire terrain. The net does
not leave a local minima by the standard BP algorithm and special techniques

should be used to get out of a local minima such as:-

1- Change the learning rate or the momentum term.
2- Change the no. of hidden units (10%).
3- Add small random value to the weights.

4- Start the learning again with different initial weights.

3.1.3.1 Back Propagation Training Algorithm

Training a network by back propagation involves three stages:-
1-the feed forward of the input training pattern
2-the back propagation of the associated error
3-the adjustment of the weights
let n = number of input units in input layer,
let p = number of hidden units in hidden layer
let m = number of output units in output layer
let Vj; be the weights between 1/p layer and the hidden layer,
let Wj; be the weights between hidden layer and the output layer,
we refer to the 1/p units as X;, 1=1, 2,,n. and we refer to the hidden units as
Z;i,j=1,....,p. and we refer to the o/p units as yi, k=1,....., m.

81; is the error in hidden layer,

Ok 1s the error in output layer,

C 1s the learning rate

oc 1s the momentum coefficient (learning coefficient, 0.0 < oc < 1.0,
yk 1 the o/p of the net (o/p layer),

Z; 1s the o/p of the hidden layer,

X; 1s the o/p of the 1/p layer.

n is the learning coefficient.

The algorithm is as following :-

Step 0 : initialize weights (set to small random value).
Step 1 : while stopping condition is false do steps 2-9
Step 2: for each training pair, do steps 3-8
Feed forward :-
Step 3:- Each i/p unit (Xj) receives i/p signal X; & broad casts this signal
to all units in the layer above (the hidden layer)

Step 4:- Each hidden unit (Z;) sums its weighted 1/p signals,
n
Z—inj=Vaj+) x;vjj (Vaj is abias)
1=1
and applies its activation function to compute its output signal (the

activation function is the binary sigmoid function),

Zif(Z—inj)=1 / (1+exp-(Z-inj))

and sends this signal to all units in the layer above (the o/p layer).

Step 5:- Each output unit (Yk)sums its weighted i/p signals,

p
y—ink = wok + Zijjk (where wok is abias)
j=1

and applies its activation function to compute its output signal.

yk = f(y—ink) =1/(1+exp—(y —ink)

back propagation of error:-
step 6 : Each output unit (yx , k= 1 tom) receive a target pattern
corresponding to the input training pattern, computes its error
information term and calculates its weights correction term used
to update Wi later,
o2k =Yk (I=yK) *(Tx —yx).
where Ty is the target pattern & k=1 tom .
step 7 : Each hidden unit (Z;, j= 1 top) computes its error information
term and calculates its weight correction term used to update Vij
later,
m
815 =24*(1-2)* ZSZijk
k=1
Update weights and bias :-
step 8: Each output unit (yy, k =1 tom) updates its bias and weights:
Wik (new) =n*062k * Zj+ oc *[Wik (dd)],
J=1top
Each hidden unit (Z;, j= 1 to p) update its bias and weights:
Vij (new) = 1*81j* Xi+ o [vij(dd)],
[=1ton

Step 9 : Test stopping condition.

EX6
Suppose you have BP- ANN with 2-input , 2-hiddden , 1-output nodes with

sigmoid function and the following matrices weight, trace with 1-iteration.

0.1 -0.3
V=[} w=[0.3 -0.5]
0.75 0.2

Where «=0.9, n=0.45, x=(1,0),and T, =1

Solution:-

Input Hidden output
units units units

1-Forword phase :-
Z-inl=X{Vi; +X,V,; =1%0.1+0%0.75=0.1
Z-in2=X;Vi2 +X72Vy, =1*-03+0*%0.2=-0.3
Z; =f(Z-mnl)=1/(1+exp—(Z—-inl))=0.5
Zr =f(Z-in2)=1/1+exp—(Z-in2))=0.426
y—inl=Z;Wy +Z; Wy,

=0.5%0.3+0.426*(-0.5)=-0.063

y1 =f(y—mnl)=1/(1+exp—(y—inl) =0.484

2-Backward phase :-
drk = yk(1-yk) *(Tk - yk)
8571 =0.484(1-0.484)*(1-0.484)0.129

m
815 =2i*(1-Z;)* 3 82k Wik
k=1
011 =21(1-Z1)*(821W11)
=0.5(1-0.5)*(0.129*0.3) =0.0097
012 =Z(1-Z3) *(821W31)
=0.426(1-0.426)*(0.129*(-0.5))=—0.015

3-Update weights:-

Wi (new) =n*6,, *Z;+ o *[ij(old)J

Wi, =n*8,, % Z,+ o *[Wy, (0ld)]
=0.45%0.129*%0.5+0.9*0.3=0.299

Wy, =1*8,,*Z,+ o * [W,(old)]
=0.45*%0.129%0.426+0.9*-0.5=-0.4253

V,(new) =1*8,, * X, + o * [V, (old)]

Vi =n*8,, * X+ oc * [V (0ld)]
=0.45*0.0097*1+0.9*%0.1=0.0944

Vi, =n*8), ¥ X+ o * [V, (old)]
=0.45*%0.0158*1+0.9*-0.3=-0.2771

Vo =18, * X, +oc* [VZI(Old)]
=0.45%0.0097*0+0.9*0.75=0.675

Vi, =n*8,, * X, + o * [V, (old)]
=0.45*-0.0158*0+0.9*%0.2=0.18

0.0944 —0.2771
= W=[0.299 -0.4253]

10675 0.18

