

Soft Computing

4th Year/2nd semester

Machine Learning

DR. Lecturer . Taqwa.F.Hassan

Computer Department - College of Engineering University of Diyala

2021-2022

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Real World Applications of Machine Learning

Face Recognition

Siri and Cortana

Healthcare Industry

Produce a Web Series

What is Machine Learning?

Machine Learning is the science of making computers learn and act like humans by feeding data and information without being explicitly programmed.

Processes involved in Machine Learning

Types of Machine Learning Algorithms

Supervised

Learning

Classification

- · Fraud Detection
- Email Spam Detection
- Image Classification

Regression

- Weather Forecasting
- · Risk Assessment
- · Score Prediction

Association

- Market Basket Analysis
- · Text Mining
- Face Recognition

Clustering

- · Medical Research
- · City Planning
- Targeted Marketing

Reinforcement Learning

Machine

Learning

- Gaming
- Robot Navigation
- · Stock Trading
- · Assembly Line Processes

Definition

Supervised Learning

Supervised Learning is used to train machines using labeled data

Unsupervised Learning

Unsupervised Learning uses unlabeled data to train machines

Reinforcement Learning

Reinforcement Learning uses an agent and an environment to produce actions and rewards

Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Linear Regression

Logistic Regression

Support Vector Machines

K Nearest Neighbors

Decision Tree

K Means Clustering

Hierarchical Clustering

DBSCAN

Principal Component Analysis Q-Learning

SARSA

Monte Carlo

Deep Q Network

Approach

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Takes labeled inputs and maps it to the known outputs

Understands patterns and trends in the data and discovers the output

Follows trial and error method to arrive at the desired solution

Training

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning techniques need external supervision to train models

Unsupervised Learning techniques do not need any supervision to train models

Reinforcement Learning techniques do not need any supervision to train models

Type of Problems

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Classification and Regression

Clustering and Association

Applications

Supervised Learning

Weather Prediction Sales Forecast Stock Price Analysis

Unsupervised Learning

Reinforcement Learning

Supervised Learning

Supervised Learning

Unsupervised Learning

Unsupervised Learning

Reinforcement Learning

Reinforcement Learning is an area of Machine Learning concerned with how intelligent agents take actions in an environment to maximize its rewards.

- 1. Environment
- 2. Agent
- 3. Action
- 4. Reward

Environment

Summary of Learning Rules

Summary of learning rules and their properties.

Learning rule	Single weight adjustment Δw_{ij}	Initial weights	Learning	Neuron characteristics	Neuron /Layer
Hebbian	$j=1,2,\ldots,n$	0	U	Any	Neuron
Perceptron	$c \left[d_i - \operatorname{sgn} \left(\mathbf{w}_i^t \mathbf{x} \right) \right] x_j$ $j = 1, 2, \dots, n$	Any	S	Binary bipolar, or Binary unipolar*	Neuron
Delta	$c(d_i - o_i)f'(net_i)x_j$ j = 1, 2,, n	Any	S	Continuous	Neuron
Widrow-Hoff	$c(d_i - \mathbf{w}_i^t \mathbf{x}) x_j$ j = 1, 2,, n	Any	S	Any	Neuron
Correlation	$j=1,2,\ldots,n$	0	S	Any	Neuron
Winner-take-all	$\Delta w_{mj} = \alpha(x_j - w_{mj})$ m-winning neuron number $j = 1, 2,, n$	Random Normalized	U	Continuous	Layer of p neurons
Outstar	$\beta(d_i - w_{ij})$ $i = 1, 2, \dots, p$	0	S	Continuous	Layer of p neurons

c, α , β are positive learning constants S — supervised learning, U — unsupervised learning

https://www.youtube.com/watch?v=1FZ0A1QCMWc

المفاهيم الأساسية لتعلم الآلة

https://academy.hsoub.com/programming/artificiaintelligence/%D8%A7%D9%84%D9%85%D9%81%D8%A7%D9%87%D9%8A%D9%85%D8%A7%D9%84%D8%A3%D8%B3%D8%A7%D8%B3%D9%8A%D8%A9%D9%84%D8%AA%D8%B9%D9%85%D8%A7%D9%84%D8%A2%D9%84%D8%A9r1009/#%D8%AA%D8%B9%D9%84%D9%85-%D8%A7%D9%84%D8%A2%D9%84%D8%A9-%D8%A7%D9%84%D8%AA%D9%82%D9%84%D9%8A%D8%AF%D9%8A

Thank you for listening