
Genetic Algorithms & Modeling

What are GAs ?

• Genetic Algorithms (GAs) are adaptive heuristic search algorithm based

on the evolutionary ideas of natural selection and genetics.

• Genetic algorithms (GAs) are a part of Evolutionary computing, a rapidly

growing area of artificial intelligence. GAs are inspired by Darwin's

theory about evolution - "survival of the fittest".

• GAs represent an intelligent exploitation of a random search used to

solve optimization problems.

• GAs, although randomized, exploit historical information to direct the

search into the region of better performance within the search space.

• In nature, competition among individuals for scanty resources results

in the fittest individuals dominating over the weaker ones.

SC – GA - Introduction

1. Introduction

Solving problems mean looking for solutions, which is best among others.

Finding the solution to a problem is often thought :

- In computer science and AI, as a process of search through the space of

possible solutions. The set of possible solutions defines the search space

(also called state space) for a given problem. Solutions or partial solutions

are viewed as points in the search space.

- In engineering and mathematics, as a process of optimization. The

problems are first formulated as mathematical models expressed in terms

of functions and then to find a solution, discover the parameters that

optimize the model or the function components that provide optimal

system performance.

SC – GA - Introduction

• Why Genetic Algorithms ?

It is better than conventional AI ; It is more robust.

- unlike older AI systems, the GA's do not break easily even if the

inputs changed slightly, or in the presence of reasonable noise.

- while performing search in large state-space, multi-modal state-space,

or n-dimensional surface, a genetic algorithms offer significant benefits

over many other typical search optimization techniques like - linear

programming, heuristic, depth-first, breath-first.

"Genetic Algorithms are good at taking large, potentially huge search

spaces and navigating them, looking for optimal combinations of things,

the solutions one might not otherwise find in a lifetime.” Salvatore

Mangano Computer Design, May 1995.

SC – GA - Introduction

1.1 Optimization

Optimization is a process that finds a best, or optimal, solution for a

problem. The Optimization problems are centered around three factors :

■ An objective function : which is to be minimized or maximized;
Examples:

1. In manufacturing, we want to maximize the profit or minimize

the cost .

2. In designing an automobile panel, we want to maximize the

strength.

■ A set of unknowns or variables : that affect the objective function,
Examples:

1. In manufacturing, the variables are amount of resources used or

the time spent.

2. In panel design problem, the variables are shape and dimensions of

the panel.

■ A set of constraints : that allow the unknowns to take on certain
values but exclude others;

Examples:

1. In manufacturing, one constrain is, that all "time" variables to

be non-negative.

2 In the panel design, we want to limit the weight and put

constrain on its shape.

An optimization problem is defined as : Finding values of the variables

that minimize or maximize the objective function while satisfying

the constraints.

SC – GA - Introduction

Optimization

• Optimization Methods

Many optimization methods exist and categorized as shown below.

The suitability of a method depends on one or more problem

characteristics to be optimized to meet one or more objectives like :

- low cost,

- high performance,

- low loss

These characteristics are not necessarily obtainable, and requires

knowledge about the problem.

Fig. Optimization Methods

Each of these methods are briefly discussed indicating the nature of

the problem they are more applicable.

SC – GA - Introduction

■ Linear Programming

Intends to obtain the optimal solution to problems that are

perfectly represented by a set of linear equations; thus require

a priori knowledge of the problem. Here the

- the functions to be minimized or maximized, is called objective

functions,

- the set of linear equations are called restrictions.

- the optimal solution, is the one that minimizes (or maximizes)

the objective function.

Example : “Traveling salesman”, seeking a minimal traveling distance.

SC – GA - Introduction

■ Non- Linear Programming

Intended for problems described by non-linear equations.

The methods are divided in three large groups:

Classical, Enumerative and Stochastic.

Classical search uses deterministic approach to find best solution.

These methods requires knowledge of gradients or higher order

derivatives. In many practical problems, some desired information

are not available, means deterministic algorithms are inappropriate.

The techniques are subdivide into:

- Direct methods, e.g. Newton or Fibonacci

- Indirect methods.

Enumerative search goes through every point (one point at a

time) related to the function's domain space. At each point, all

possible solutions are generated and tested to find optimum

solution. It is easy to implement but usually require significant

computation. In the field of artificial intelligence, the enumerative

methods are subdivided into two categories:

- Uninformed methods, e.g. Mini-Max algorithm

- Informed methods, e.g. Alpha-Beta and A* ,

Stochastic search deliberately introduces randomness into the search

process. The injected randomness may provide the necessary impetus

to move away from a local solution when searching for a global

optimum. e.g., a gradient vector criterion for “smoothing” problems.

Stochastic methods offer robustness quality to optimization process.

Among the stochastic techniques, the most widely used are :

- Evolutionary Strategies (ES),

- Genetic Algorithms (GA), and

- Simulated Annealing (SA).

The ES and GA emulate nature’s evolutionary behavior, while SA is

based on the physical process of annealing a material.

SC – GA - Introduction

1.3 Evolutionary Algorithm (EAs)

Evolutionary Algorithm (EA) is a subset of Evolutionary Computation (EC)

which is a subfield of Artificial Intelligence (AI).

Evolutionary Computation (EC) is a general term for several

computational techniques. Evolutionary Computation represents powerful

search and optimization paradigm influenced by biological mechanisms of

evolution : that of natural selection and genetic.

Evolutionary Algorithms (EAs) refers to Evolutionary Computational

models using randomness and genetic inspired operations. EAs

involve selection, recombination, random variation and competition of the

individuals in a population of adequately represented potential solutions.

The candidate solutions are referred as chromosomes or individuals.

Genetic Algorithms (GAs) represent the main paradigm of Evolutionary

Computation.

- GAs simulate natural evolution, mimicking processes the nature uses :

Selection, Crosses over, Mutation and Accepting.

- GAs simulate the survival of the fittest among individuals over

consecutive generation for solving a problem.

Development History

EC = GP + ES + EP + GA
Evolutionary
Computing

Rechenberg

1960

Genetic
Programming

Koza
1992

Evolution
Strategies

Rechenberg

1965

Evolutionary
Programming

Fogel
1962

Genetic
Algorithms

Holland
1970

SC – GA - Introduction

1.4 Genetic Algorithms (GAs) - Basic Concepts

Genetic algorithms (GAs) are the main paradigm of evolutionary

computing. GAs are inspired by Darwin's theory about evolution – the

"survival of the fittest". In nature, competition among individuals for

scanty resources results in the fittest individuals dominating over the

weaker ones.

- GAs are the ways of solving problems by mimicking processes nature

uses; ie., Selection, Crosses over, Mutation and Accepting, to evolve a

solution to a problem.

- GAs are adaptive heuristic search based on the evolutionary ideas

of natural selection and genetics.

- GAs are intelligent exploitation of random search used in optimization

problems.

- GAs, although randomized, exploit historical information to direct the

search into the region of better performance within the search space.

The biological background (basic genetics), the scheme of evolutionary

processes, the working principles and the steps involved in GAs are

illustrated in next few slides.

SC – GA - Introduction

• Biological Background – Basic Genetics

‡ Every organism has a set of rules, describing how that organism

is built. All living organisms consist of cells.

‡ In each cell there is same set of chromosomes. Chromosomes are

strings of DNA and serve as a model for the whole organism.

‡ A chromosome consists of genes, blocks of DNA.

‡ Each gene encodes a particular protein that represents a trait

(feature), e.g., color of eyes.

‡ Possible settings for a trait (e.g. blue, brown) are called alleles.

‡ Each gene has its own position in the chromosome called its locus.

‡ Complete set of genetic material (all chromosomes) is called a

genome.

‡ Particular set of genes in a genome is called genotype.

‡ The physical expression of the genotype (the organism itself after

birth) is called the phenotype, its physical and mental characteristics,

such as eye color, intelligence etc.

‡ When two organisms mate they share their genes; the resultant

offspring may end up having half the genes from one parent and half

from the other. This process is called recombination (cross over) .

‡ The new created offspring can then be mutated. Mutation means,

that the elements of DNA are a bit changed. This changes are mainly

caused by errors in copying genes from parents.

‡ The fitness of an organism is measured by success of the organism

in its life (survival).

SC – GA - Introduction

[continued from previous slide - Biological background]

Below shown, the general scheme of evolutionary process in genetic

along with pseudo-code.

Fig. General Scheme of Evolutionary process

Pseudo-Code

BEGIN

INITIALISE population with random candidate solution.

EVALUATE each candidate;

REPEAT UNTIL (termination condition) is satisfied DO

1. SELECT parents;

2. RECOMBINE pairs of parents;

3. MUTATE the resulting offspring;

4. SELECT individuals or the next generation;

END.

SC – GA - Introduction

• Search Space

In solving problems, some solution will be the best among others.

The space of all feasible solutions (among which the desired solution

resides) is called search space (also called state space).

- Each point in the search space represents one possible solution.

- Each possible solution can be "marked" by its value (or fitness) for

the problem.

- The GA looks for the best solution among a number of possible

solutions represented by one point in the search space.

- Looking for a solution is then equal to looking for some extreme value

(minimum or maximum) in the search space.

- At times the search space may be well defined, but usually only a few

points in the search space are known.

In using GA, the process of finding solutions generates other points

(possible solutions) as evolution proceeds.

SC – GA - Introduction

• Working Principles

Before getting into GAs, it is necessary to explain few terms.

- Chromosome : a set of genes; a chromosome contains the solution in

form of genes.

- Gene : a part of chromosome; a gene contains a part of solution. It

determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4

and 3 are its genes.

- Individual : same as chromosome.

- Population: number of individuals present with same length of

chromosome.

- Fitness : the value assigned to an individual based on how far or

close a individual is from the solution; greater the fitness value better

the solution it contains.

- Fitness function : a function that assigns fitness value to the individual.

It is problem specific.

- Breeding : taking two fit individuals and then intermingling there

chromosome to create new two individuals.

- Mutation : changing a random gene in an individual.

- Selection : selecting individuals for creating the next generation.

Working principles :

Genetic algorithm begins with a set of solutions (represented by

chromosomes) called the population.

- Solutions from one population are taken and used to form a new

population. This is motivated by the possibility that the new population

will be better than the old one.

- Solutions are selected according to their fitness to form new solutions

(offspring); more suitable they are, more chances they have to

reproduce.

- This is repeated until some condition (e.g. number of populations or

improvement of the best solution) is satisfied.

SC – GA - Introduction

• Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (i.e. suitable

solutions for the problem).

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the

population.

3. [New population] Create a new population by repeating following

steps until the new population is complete.

(a) [Selection] Select two parent chromosomes from a population

according to their fitness (better the fitness, bigger the chance to

be selected)

(b) [Crossover] With a crossover probability, cross over the parents

to form new offspring (children). If no crossover was performed,

offspring is the exact copy of parents.

(c) [Mutation] With a mutation probability, mutate new offspring at

each locus (position in chromosome).

(d) [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the

algorithm

5. [Test] If the end condition is satisfied, stop, and return the best

solution in current population

6. [Loop] Go to step 2

Note : The genetic algorithm's performance is largely influenced by two

operators called crossover and mutation. These two operators are the

most important parts of GA.

SC – GA - Introduction

• Flow chart for Genetic Programming

Fig. Genetic Algorithm – program flow chart

SC – GA - Encoding

2. Encoding

Before a genetic algorithm can be put to work on any problem, a method is

needed to encode potential solutions to that problem in a form so that a

computer can process.

- One common approach is to encode solutions as binary strings: sequences

of 1's and 0's, where the digit at each position represents the value of

some aspect of the solution.

Example :

A Gene represents some data (eye color, hair color, sight, etc.).

A chromosome is an array of genes. In binary form

a Gene looks like : (11100010)

a Chromosome looks like: Gene1 Gene2 Gene3 Gene4

(11000010, 00001110, 001111010, 10100011)

A chromosome should in some way contain information about solution

which it represents; it thus requires encoding. The most popular way of

encoding is a binary string like :

Chromosome 1 : 1101100100110110

Chromosome 2 : 1101111000011110

Each bit in the string represent some characteristics of the solution.

- There are many other ways of encoding, e.g., encoding values as integer or

real numbers or some permutations and so on.

- The virtue of these encoding method depends on the problem to work on .

SC – GA - Encoding

• Binary Encoding

Binary encoding is the most common to represent information contained.

In genetic algorithms, it was first used because of its relative simplicity.

- In binary encoding, every chromosome is a string of bits : 0 or 1, like

Chromosome 1: 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1

Chromosome 2: 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1

- Binary encoding gives many possible chromosomes even with a small

number of alleles ie possible settings for a trait (features).

- This encoding is often not natural for many problems and sometimes

corrections must be made after crossover and/or mutation.

Example 1:

One variable function, say 0 to 15 numbers, numeric values,

represented by 4 bit binary string.

Numeric
value

4–bit
string

Numeric
value

4–bit
string

Numeric
value

4–bit
string

0 0 0 0 0 6 0 1 1 0 12 1 1 0 0

1 0 0 0 1 7 0 1 1 1 13 1 1 0 1

2 0 0 1 0 8 1 0 0 0 14 1 1 1 0

3 0 0 1 1 9 1 0 0 1 15 1 1 1 1

4 0 1 0 0 10 1 0 1 0

5 0 1 0 1 11 1 0 1 1

SC – GA - Encoding

• Value Encoding

The Value encoding can be used in problems where values such as real

numbers are used. Use of binary encoding for this type of problems

would be difficult.

1. In value encoding, every chromosome is a sequence of some values.

2. The Values can be anything connected to the problem, such as :

real numbers, characters or objects.

Examples :

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

3. Value encoding is often necessary to develop some new types of

crossovers and mutations specific for the problem.

SC – GA - Encoding

• Permutation Encoding

Permutation encoding can be used in ordering problems, such as traveling

salesman problem or task ordering problem.

1. In permutation encoding, every chromosome is a string of numbers

that represent a position in a sequence.

2. Permutation encoding is useful for ordering problems. For some

problems, crossover and mutation corrections must be made to

leave the chromosome consistent.

Examples :

1. The Traveling Salesman problem:

There are cities and given distances between them. Traveling

salesman has to visit all of them, but he does not want to travel more

than necessary. Find a sequence of cities with a minimal traveled

distance. Here, encoded chromosomes describe the order of cities the

salesman visits.

2. The Eight Queens problem :

There are eight queens. Find a way to place them on a chess board

so that no two queens attack each other. Here, encoding

describes the position of a queen on each row.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

SC – GA - Encoding

• Tree Encoding

Tree encoding is used mainly for evolving programs or expressions.

For genetic programming :

- In tree encoding, every chromosome is a tree of some objects, such as

functions or commands in programming language.

- Tree encoding is useful for evolving programs or any other structures

that can be encoded in trees.

- The crossover and mutation can be done relatively easy way .

Example :

Fig. Example of Chromosomes with tree encoding

Note : Tree encoding is good for evolving programs. The programming

language LISP is often used. Programs in LISP can be easily parsed as a

tree, so the crossover and mutation is relatively easy.

SC – GA - Operators

3. Operators of Genetic Algorithm

Genetic operators used in genetic algorithms maintain genetic diversity.

Genetic diversity or variation is a necessity for the process of evolution.

Genetic operators are analogous to those which occur in the natural world:

- Reproduction (or Selection) ;

- Crossover (or Recombination); and

- Mutation.

In addition to these operators, there are some parameters of GA.

One important parameter is Population size.

- Population size says how many chromosomes are in population (in one

generation).

- If there are only few chromosomes, then GA would have a few possibilities

to perform crossover and only a small part of search space is explored.

- If there are many chromosomes, then GA slows down.

- Research shows that after some limit, it is not useful to increase population

size, because it does not help in solving the problem faster. The population

size depends on the type of encoding and the problem.

SC – GA - Operators

3.1 Reproduction, or Selection

Reproduction is usually the first operator applied on population. From

the population, the chromosomes are selected to be parents to crossover

and produce offspring.

The problem is how to select these chromosomes ?

According to Darwin's evolution theory "survival of the fittest" – the best

ones should survive and create new offspring.

- The Reproduction operators are also called Selection operators.

- Selection means extract a subset of genes from an existing population,

according to any definition of quality. Every gene has a meaning, so

one can derive from the gene a kind of quality measurement called

fitness function. Following this quality (fitness value), selection can be

performed.

- Fitness function quantifies the optimality of a solution (chromosome) so

that a particular solution may be ranked against all the other solutions.

The function depicts the closeness of a given ‘solution’ to the desired

result.

Many reproduction operators exists and they all essentially do same thing.

They pick from current population the strings of above average and insert

their multiple copies in the mating pool in a probabilistic manner.

The most commonly used methods of selecting chromosomes for parents

to crossover are :

- Roulette wheel selection, - Rank selection

- Boltzmann selection, - Steady state selection.

- Tournament selection,

The Roulette wheel and Boltzmann selections methods are illustrated next.

SC – GA - Operators

• Example of Selection

Evolutionary Algorithms is to maximize the function f(x) = x2 with x in

the integer interval [0 , 31], i.e., x = 0, 1, . . . 30, 31.

1. The first step is encoding of chromosomes; use binary representation

for integers; 5-bits are used to represent integers up to 31.

2. Assume that the population size is 4.

3. Generate initial population at random. They are chromosomes or

genotypes; e.g., 01101, 11000, 01000, 10011.

4. Calculate fitness value for each individual.

(a) Decode the individual into an integer (called phenotypes),

01101 ® 13; 11000 ® 24; 01000 ® 8; 10011 ® 19;

(b) Evaluate the fitness according to f(x) = x2 ,

13 ® 169; 24 ® 576; 8 ® 64; 19 ® 361.

5. Select parents (two individuals) for crossover based on their fitness

in pi. Out of many methods for selecting the best chromosomes, if

roulette-wheel selection is used, then the probability of the i th string
n

in the population is pi = F i / (S
j=1

F j) , where

F i is fitness for the string i in the population, expressed as f(x)

pi is probability of the string i being selected,

n is no of individuals in the population, is population size, n=4

n * pi is expected count

String No Initial
Population

X value Fitness Fi
f(x) = x2

p i Expected count
N * Prob i

1 0 1 1 0 1 13 169 0.14 0.58

2 1 1 0 0 0 24 576 0.49 1.97

3 0 1 0 0 0 8 64 0.06 0.22

4 1 0 0 1 1 19 361 0.31 1.23

Sum 1170 1.00 4.00

Average 293 0.25 1.00

Max 576 0.49 1.97

The string no 2 has maximum chance of selection.

SC – GA - Operators

• Roulette wheel selection (Fitness-Proportionate Selection)

Roulette-wheel selection, also known as Fitness Proportionate Selection, is

a genetic operator, used for selecting potentially useful solutions for

recombination.

In fitness-proportionate selection :

- the chance of an individual's being selected is proportional to its

fitness, greater or less than its competitors' fitness.

- conceptually, this can be thought as a game of Roulette.

1

20%

5
Fig. Roulette-wheel Shows 8

individual with fitness

The Roulette-wheel simulates 8

individuals with fitness values Fi,

marked at its circumference; e.g.,

- the 5th individual has a higher

fitness than others, so the wheel

would choose the 5th individual

more than other individuals .

- the fitness of the individuals is

calculated as the wheel is spun

n = 8 times, each time selecting

an instance, of the string, chosen

by the wheel pointer.

Probability of i th string is pi

= F i

n
/ (S

j=1

F j) , where

n = no of individuals, called population size; pi = probability of ith

string being selected; Fi = fitness for ith string in the population.

Because the circumference of the wheel is marked according to

a string's fitness, the Roulette-wheel mechanism is expected to
make F

F

copies of the ith string.

Average fitness = F F j / n ; Expected count = (n =8) x pi
N=5

Cumulative Probability5 = S pi
i=1

20%

5%
9%

8%

13%

8% 17%

SC – GA - Operators

3.2 Crossover

Crossover is a genetic operator that combines (mates) two chromosomes

(parents) to produce a new chromosome (offspring). The idea behind

crossover is that the new chromosome may be better than both of the

parents if it takes the best characteristics from each of the parents.

Crossover occurs during evolution according to a user-definable crossover

probability. Crossover selects genes from parent chromosomes and

creates a new offspring.

The Crossover operators are of many types.

- one simple way is, One-Point crossover.

- the others are Two Point, Uniform, Arithmetic, and Heuristic crossovers.

The operators are selected based on the way chromosomes are encoded.

SC – GA - Operators

• One-Point Crossover

One-Point crossover operator randomly selects one crossover point and

then copy everything before this point from the first parent and then

everything after the crossover point copy from the second parent. The

Crossover would then look as shown below.

Consider the two parents selected for crossover.

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0

Interchanging the parents chromosomes after the crossover points -

The Offspring produced are :

Offspring 1 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0

Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0

Note : The symbol, a vertical line, | is the chosen crossover point.

SC – GA - Operators

• Two-Point Crossover

Two-Point crossover operator randomly selects two crossover points within

a chromosome then interchanges the two parent chromosomes between

these points to produce two new offspring.

Consider the two parents selected for crossover :

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 | 1 1 1 0

Interchanging the parents chromosomes between the crossover points -

The Offspring produced are :

Offspring 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0

Offspring 2 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0

SC – GA - Operators

• Uniform Crossover

Uniform crossover operator decides (with some probability – know as the

mixing ratio) which parent will contribute how the gene values in the

offspring chromosomes. The crossover operator allows the parent

chromosomes to be mixed at the gene level rather than the segment

level (as with one and two point crossover).

Consider the two parents selected for crossover.

Parent 1

Parent 2

If the mixing ratio is 0.5 approximately, then half of the genes in the

offspring will come from parent 1 and other half will come from parent 2.

The possible set of offspring after uniform crossover would be:

Offspring 1 11 12 02 11 11 12 12 02 01 01 02 11 12 11 11 02

Offspring 2 12 11 01 12 12 01 01 11 02 02 11 12 01 12 12 01

Note: The subscripts indicate which parent the gene came from.

1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0

1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0

SC – GA - Operators

• Arithmetic

Arithmetic crossover operator linearly combines two parent chromosome

vectors to produce two new offspring according to the equations:

Offspring1 = a * Parent1 + (1- a) * Parent2

Offspring2 = (1 – a) * Parent1 + a * Parent2

where a is a random weighting factor chosen before each crossover

operation.

Consider two parents (each of 4 float genes) selected for crossover:

Parent 1 (0.3) (1.4) (0.2) (7.4)

Parent 2 (0.5) (4.5) (0.1) (5.6)

Applying the above two equations and assuming the weighting

factor a = 0.7, applying above equations, we get two resulting offspring.

The possible set of offspring after arithmetic crossover would be:

Offspring 1 (0.36) (2.33) (0.17) (6.87)

Offspring 2 (0.402) (2.981) (0.149) (5.842)

SC – GA - Operators

3.3 Mutation

After a crossover is performed, mutation takes place.

Mutation is a genetic operator used to maintain genetic diversity from

one generation of a population of chromosomes to the next.

Mutation occurs during evolution according to a user-definable mutation

probability, usually set to fairly low value, say 0.01 a good first choice.

Mutation alters one or more gene values in a chromosome from its initial

state. This can result in entirely new gene values being added to the

gene pool. With the new gene values, the genetic algorithm may be able

to arrive at better solution than was previously possible.

Mutation is an important part of the genetic search, helps to prevent the

population from stagnating at any local optima. Mutation is intended to

prevent the search falling into a local optimum of the state space.

The Mutation operators are of many type.

- one simple way is, Flip Bit.

- the others are Boundary, Non-Uniform, Uniform, and Gaussian.

The operators are selected based on the way chromosomes are

encoded .

SC – GA - Operators

• Flip Bit

The mutation operator simply inverts the value of the chosen gene.

i.e. 0 goes to 1 and 1 goes to 0.

This mutation operator can only be used for binary genes.

Consider the two original off-springs selected for mutation.

Original offspring 1

Original offspring 2

Invert the value of the chosen gene as 0 to 1 and 1 to 0

The Mutated Off-spring produced are :

Mutated offspring 1

Mutated offspring 2

1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0

1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0

1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0

SC – GA - Examples

4. Basic Genetic Algorithm :

Examples to demonstrate and explain : Random population, Fitness, Selection,

Crossover, Mutation, and Accepting.

• Example 1 :
Maximize the function f(x) = x2 over the range of integers from 0 . . . 31.

Note : This function could be solved by a variety of traditional methods

such as a hill-climbing algorithm which uses the derivative.

One way is to :

- Start from any integer x in the domain of f

- Evaluate at this point x the derivative f’

- Observing that the derivative is +ve, pick a new x which is at a small

distance in the +ve direction from current x

- Repeat until x = 31

See, how a genetic algorithm would approach this problem ?

SC – GA - Examples

[continued from previous slide]

Genetic Algorithm approach to problem - Maximize the function f(x) = x2

1. Devise a means to represent a solution to the problem :

Assume, we represent x with five-digit unsigned binary integers.

2. Devise a heuristic for evaluating the fitness of any particular solution :

The function f(x) is simple, so it is easy to use the f(x) value itself to rate

the fitness of a solution; else we might have considered a more simpler

heuristic that would more or less serve the same purpose.

3. Coding - Binary and the String length :

GAs often process binary representations of solutions. This works well,

because crossover and mutation can be clearly defined for binary solutions.

A Binary string of length 5 can represents 32 numbers (0 to 31).

4. Randomly generate a set of solutions :

Here, considered a population of four solutions. However, larger populations

are used in real applications to explore a larger part of the search. Assume,

four randomly generated solutions as : 01101, 11000, 01000, 10011.

These are chromosomes or genotypes.

5. Evaluate the fitness of each member of the population :

The calculated fitness values for each individual are -

(a) Decode the individual into an integer (called phenotypes),

01101 ® 13; 11000 ® 24; 01000 ® 8; 10011 ® 19;

(b) Evaluate the fitness according to f(x) = x 2 ,

13 ® 169; 24 ® 576; 8 ® 64; 19 ® 361.

(c) Expected count = N * Prob i , where N is the number of

individuals in the population called population size, here N = 4.

Thus the evaluation of the initial population summarized in table below .

String No
i

Initial
Population

(chromosome)

X value
(Pheno
types)

Fitness
f(x) = x2

Prob i
(fraction
of total)

Expected count
N * Prob i

1 0 1 1 0 1 13 169 0.14 0.58
2 1 1 0 0 0 24 576 0.49 1.97
3 0 1 0 0 0 8 64 0.06 0.22
4 1 0 0 1 1 19 361 0.31 1.23

Total (sum) 1170 1.00 4.00
Average 293 0.25 1.00

Max 576 0.49 1.97

Thus, the string no 2 has maximum chance of selection.

SC – GA - Examples

6. Produce a new generation of solutions by picking from the existing

pool of solutions with a preference for solutions which are better

suited than others:

We divide the range into four bins, sized according to the relative fitness of

the solutions which they represent.

Strings Prob i Associated Bin

0 1 1 0 1 0.14 0.0 . . . 0.14
1 1 0 0 0 0.49 0.14 . . . 0.63
0 1 0 0 0 0.06 0.63 . . . 0.69
1 0 0 1 1 0.31 0.69 . . . 1.00

By generating 4 uniform (0, 1) random values and seeing which bin they fall

into we pick the four strings that will form the basis for the next generation.

Random No Falls into bin Chosen string

0.08 0.0 . . . 0.14 0 1 1 0 1
0.24 0.14 . . . 0.63 1 1 0 0 0
0.52 0.14 . . . 0.63 1 1 0 0 0
0.87 0.69 . . . 1.00 1 0 0 1 1

7. Randomly pair the members of the new generation

Random number generator decides for us to mate the first two strings

together and the second two strings together.

8. Within each pair swap parts of the members solutions to create

offspring which are a mixture of the parents :

For the first pair of strings: 0 1 1 0 1 , 1 1 0 0 0

- We randomly select the crossover point to be after the fourth digit.

Crossing these two strings at that point yields:

0 1 1 0 1 Þ 0 1 1 0 |1 Þ 0 1 1 0 0

1 1 0 0 0 Þ 1 1 0 0 |0 Þ 1 1 0 0 1

For the second pair of strings: 1 1 0 0 0 , 1 0 0 1 1

- We randomly select the crossover point to be after the second digit.

Crossing these two strings at that point yields:

1 1 0 0 0 Þ 1 1 |0 0 0 Þ 1 1 0 1 1

1 0 0 1 1 Þ 1 0 |0 1 1 Þ 1 0 0 0 0

SC – GA - Examples

9. Randomly mutate a very small fraction of genes in the population :

With a typical mutation probability of per bit it happens that none of the bits

in our population are mutated.

10. Go back and re-evaluate fitness of the population (new generation) :

This would be the first step in generating a new generation of solutions.

However it is also useful in showing the way that a single iteration of the

genetic algorithm has improved this sample.

String No Initial
Population

(chromosome)

X value
(Pheno
types)

Fitness
f(x) = x2

Prob i
(fraction
of total)

Expected count

1 0 1 1 0 0 12 144 0.082 0.328
2 1 1 0 0 1 25 625 0.356 1.424
3 1 1 0 1 1 27 729 0.415 1.660
4 1 0 0 0 0 16 256 0.145 0.580

Total (sum) 1754 1.000 4.000
Average 439 0.250 1.000

Max 729 0.415 1.660

Observe that :

1. Initial populations : At start step 5 were

0 1 1 0 1 , 1 1 0 0 0 , 0 1 0 0 0 , 1 0 0 1 1

After one cycle, new populations, at step 10 to act as initial population

0 1 1 0 0 , 1 1 0 0 1 , 1 1 0 11 , 1 0 0 0 0

2. The total fitness has gone from 1170 to 1754 in a single generation.

3. The algorithm has already come up with the string 11011 (i.e x = 27) as

a possible solution.

H.W./ Find the new generation by applying (GA) of the population with 6 chromosomes [(4,11,3,7),
(9,1,6,8), (7,12,5,3), (11,8,9,3), (15,6,1,4), (8,13,2,10)] for the function:
f (w, x, y, z) =wx+xy+yz. With cross-over from the 2nd Gene to 3rd gene and Mutation of two bits in
each to minimize the result of f (w, x, y, z).

Hint:
Chromosome1= 0100 1011 0011 0111 where each of w, x, y, z is gene. And so on to other Chromosomes

 W X Y Z

