
Genetic Algorithms & Modeling 
 
What are GAs ? 

 
• Genetic Algorithms (GAs) are adaptive heuristic search algorithm based 

on the evolutionary ideas of natural selection and genetics. 

• Genetic algorithms (GAs) are a part of Evolutionary computing, a rapidly 

growing area of artificial intelligence. GAs are inspired  by  Darwin's  

theory about evolution - "survival of the fittest". 

 
• GAs represent an intelligent exploitation of a random  search used to  

solve optimization problems. 

 
• GAs, although randomized, exploit historical information to direct the 

search into the region of better performance within the search space. 

 
• In nature, competition among individuals for scanty resources results      

in the fittest individuals dominating over the weaker ones. 
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1. Introduction 
 

Solving problems mean looking for solutions, which is best among others. 

Finding the solution to a problem is often thought : 

- In computer science and AI, as a process of search through the space of 

possible solutions. The set of possible solutions defines the search space 

(also called state space) for a given problem. Solutions or partial solutions 

are viewed as points in the search space. 

- In engineering and mathematics, as a process of optimization. The 

problems are first formulated as mathematical models expressed in terms  

of functions and then to find a solution, discover the parameters that 

optimize the model or the function components that provide  optimal  

system performance. 
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• Why Genetic Algorithms ? 
 

It is better than conventional AI ; It is more robust. 
 

- unlike older AI systems, the GA's do not break easily even if the  

inputs changed slightly, or in the presence of reasonable noise. 

- while performing search in large state-space, multi-modal state-space, 

or n-dimensional surface, a genetic algorithms offer significant benefits 

over many other typical search optimization techniques like - linear 

programming, heuristic, depth-first, breath-first. 

"Genetic Algorithms are good at taking large, potentially huge search 

spaces and navigating them, looking for optimal combinations of things, 

the solutions one might not otherwise find in a lifetime.” Salvatore 

Mangano Computer Design, May 1995. 
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1.1 Optimization 
 

Optimization is a process that finds a best, or optimal, solution for a 

problem. The Optimization problems are centered around three factors : 

■ An objective function : which is to be minimized or maximized; 
Examples: 

1. In manufacturing, we want to maximize the profit or minimize   

the cost . 

2. In designing an automobile panel, we want to maximize the 

strength. 

■ A set of unknowns or variables : that affect the objective function, 
Examples: 

1. In manufacturing, the variables are amount of resources used or 

the time spent. 

2. In panel design problem, the variables are shape and dimensions of 

the panel. 

■ A  set  of constraints : that allow the unknowns to take on certain 
values but exclude others; 

Examples: 

1. In manufacturing, one constrain is,  that  all "time" variables  to  

be non-negative. 

2 In the panel design, we want to limit the weight and put 

constrain on its shape. 

An optimization problem is defined as : Finding values of the variables 

that  minimize  or  maximize  the  objective  function  while  satisfying  

the constraints. 
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Optimization 
 

   

  

• Optimization Methods 

Many optimization methods  exist  and  categorized  as  shown  below. 

The suitability  of a method depends on one or more problem 

characteristics to be optimized to meet one or more objectives like : 

- low cost, 

- high performance, 

- low loss 

These characteristics are not necessarily obtainable, and requires 

knowledge about the problem. 

 
 
 
 
 
 

 
Fig. Optimization Methods 

 
Each of these methods are briefly  discussed  indicating  the nature  of  

the problem they are more applicable. 
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■ Linear Programming 
 

Intends to obtain the optimal solution  to  problems  that  are  

perfectly  represented  by  a  set  of  linear  equations;  thus  require  

a priori knowledge of the problem. Here the 

- the functions to be minimized or maximized, is called objective 

functions, 

- the set of linear equations are called restrictions. 
 

- the optimal solution, is the one  that  minimizes (or maximizes)  

the objective function. 

Example : “Traveling salesman”, seeking a minimal traveling distance. 
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■ Non- Linear Programming 

Intended for problems described by non-linear equations. 

The methods are divided in three large groups: 

Classical, Enumerative and Stochastic. 
 

Classical search uses deterministic approach to find best solution. 

These methods requires knowledge of gradients or higher order 

derivatives. In  many practical problems, some desired information  

are not available, means deterministic algorithms are inappropriate. 

The techniques are subdivide into: 

- Direct methods, e.g. Newton or Fibonacci 

- Indirect methods. 
 

Enumerative search goes through  every  point  (one  point  at  a  

time ) related to the function's domain space. At each point, all 

possible solutions are generated and tested to  find  optimum  

solution. It is easy to implement but usually require significant 

computation. In the field of artificial intelligence, the enumerative 

methods are subdivided into two categories: 

- Uninformed methods, e.g. Mini-Max algorithm 

- Informed methods, e.g. Alpha-Beta and A* , 
 

Stochastic search deliberately introduces randomness into the search 

process. The injected randomness may provide the necessary impetus 

to move away from a local solution when searching for a global 

optimum. e.g., a gradient vector criterion for “smoothing” problems. 

Stochastic methods offer robustness quality to optimization process. 

Among the stochastic techniques, the most widely used are : 

- Evolutionary Strategies (ES), 

- Genetic Algorithms (GA), and 

- Simulated Annealing (SA). 

The ES and GA emulate nature’s evolutionary behavior, while SA is 

based on the physical process of annealing a material. 
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1.3 Evolutionary Algorithm (EAs) 
 

Evolutionary Algorithm (EA) is a subset of Evolutionary Computation (EC) 

which is a subfield of Artificial Intelligence (AI). 

 
Evolutionary Computation (EC) is a general term for several 

computational techniques. Evolutionary Computation represents powerful 

search and optimization paradigm influenced by biological mechanisms of 

evolution : that of natural selection and genetic. 

 
Evolutionary Algorithms (EAs) refers to Evolutionary Computational 

models using randomness and genetic  inspired operations. EAs 

involve selection, recombination, random variation and competition of the 

individuals in a population of adequately represented potential solutions. 

The candidate solutions are referred as chromosomes or individuals. 

 
Genetic  Algorithms  (GAs)  represent the main paradigm of Evolutionary 

Computation. 

- GAs simulate natural evolution, mimicking processes the nature uses : 

Selection, Crosses over, Mutation and Accepting. 

- GAs simulate the survival of the fittest among individuals over 

consecutive generation for solving a problem. 

Development History 
 

EC = GP + ES + EP + GA 
Evolutionary 
Computing 

 
Rechenberg 

1960 

Genetic 
Programming 

 
Koza 
1992 

Evolution 
Strategies 

 
Rechenberg 

1965 

Evolutionary 
Programming 

 
Fogel 
1962 

Genetic 
Algorithms 

 
Holland 
1970 
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1.4 Genetic Algorithms (GAs) - Basic Concepts 
 

Genetic algorithms (GAs) are the main paradigm of evolutionary 

computing. GAs are inspired by Darwin's theory about evolution – the 

"survival of the fittest". In nature, competition among individuals for 

scanty resources results in the fittest individuals dominating over the 

weaker ones. 

- GAs are the ways of solving problems by mimicking processes nature 

uses; ie., Selection, Crosses over, Mutation and Accepting, to evolve a 

solution to a problem. 

- GAs  are  adaptive heuristic search  based on the evolutionary ideas   

of natural selection and genetics. 

- GAs are intelligent exploitation of random search used in optimization 

problems. 

- GAs, although randomized, exploit historical information to direct the 

search into the region of better performance within the search space. 

The biological background (basic genetics), the scheme of evolutionary 

processes, the working principles and the steps involved in GAs are 

illustrated in next few slides. 
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• Biological Background – Basic Genetics 

‡ Every organism  has  a  set  of  rules, describing how  that  organism  

is built. All living organisms consist of cells. 

‡  In each cell  there  is  same set of chromosomes. Chromosomes are 

strings of DNA and serve as a model for the whole organism. 

‡ A chromosome consists of genes, blocks of DNA. 
 

‡  Each gene encodes a particular protein that represents a trait 

(feature), e.g., color of eyes. 
 

‡ Possible settings for a trait (e.g. blue, brown) are called alleles. 
 

‡ Each gene has its own position in the chromosome called its locus. 
 

‡  Complete set   of genetic  material (all chromosomes) is called a 

genome. 
 

‡ Particular set of genes in a genome is called genotype. 
 

‡ The physical expression of the genotype (the organism itself after  

birth) is called the phenotype, its physical and mental characteristics, 

such as eye color, intelligence etc. 

‡ When two organisms mate they share their genes; the resultant 

offspring may end up having half the genes from one parent and half 

from the other. This process is called recombination (cross over) . 

‡ The new  created offspring can then be mutated. Mutation  means,  

that the elements of DNA are a bit changed. This changes are mainly 

caused by errors in copying genes from parents. 

‡  The fitness  of an organism is measured by success of the organism   

in its life (survival). 
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[ continued from previous slide - Biological background ] 
 

Below shown, the general scheme of  evolutionary process in genetic 

along with pseudo-code. 

 

Fig. General Scheme of Evolutionary process 
 

Pseudo-Code 

BEGIN 

INITIALISE population with random candidate solution. 

EVALUATE each candidate; 

REPEAT UNTIL (termination condition ) is satisfied DO 

1. SELECT parents; 

2. RECOMBINE pairs of parents; 

3. MUTATE the resulting offspring; 

4. SELECT individuals or the next generation; 

END. 
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• Search Space 

In solving  problems,  some  solution  will be  the best  among  others. 

The space of all feasible solutions (among which the desired solution 

resides) is called search space (also called state space). 

- Each point in the search space represents one possible solution. 

- Each possible solution can  be "marked" by its value (or fitness) for 

the problem. 

- The GA looks for the best solution among a number of possible 

solutions represented by one point in the search space. 

- Looking for a solution is then equal to looking for some extreme value 

(minimum or maximum) in the search space. 

- At times the search space may be well defined, but usually only a few 

points in the search space are known. 

In using GA, the process of finding solutions generates other points 

(possible solutions) as evolution proceeds. 
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• Working Principles 

Before getting into GAs, it is necessary to explain few terms. 
 

- Chromosome : a set of genes; a chromosome contains the solution in 

form of genes. 

- Gene : a part of chromosome; a gene contains a part of solution. It 

determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4 

and 3 are its genes. 

- Individual : same as chromosome. 

- Population: number of individuals present with same length of 

chromosome. 

- Fitness : the value assigned to an individual based  on how  far or  

close a individual is from the solution; greater the fitness value better 

the solution it contains. 

- Fitness function : a function that assigns fitness value to the individual. 

It is problem specific. 

- Breeding : taking two fit individuals and then intermingling there 

chromosome to create new two individuals. 

- Mutation : changing a random gene in an individual. 

- Selection : selecting individuals for creating the next generation. 
 

Working principles : 

Genetic algorithm begins with a set of solutions (represented by 

chromosomes) called the population. 

- Solutions from one population are taken and used to form a new 

population. This is motivated by the possibility that the new population 

will be better than the old one. 

- Solutions are selected according to their fitness to form new solutions 

(offspring); more suitable they are, more chances they have to 

reproduce. 

- This is repeated until some condition (e.g. number of populations or 

improvement of the best solution) is satisfied. 
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• Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (i.e. suitable 

solutions for the problem). 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the 

population. 

3. [New population] Create a new population by repeating following 

steps until the new population is complete. 

(a) [Selection] Select two parent chromosomes from a population 

according to their fitness (better the fitness, bigger the chance to 

be selected) 

(b) [Crossover] With a crossover probability, cross  over the parents 

to form new offspring (children). If no crossover was performed, 

offspring is the exact copy of parents. 

(c) [Mutation] With a mutation probability, mutate new offspring at 

each locus (position in chromosome). 

(d) [Accepting] Place new offspring in the new population 

4. [Replace] Use new generated population for a further run of the 

algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best 

solution in current population 

6. [Loop] Go to step 2 
 

Note : The genetic algorithm's performance is largely influenced by two 

operators called crossover and mutation. These two operators are the 

most important parts of GA. 
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• Flow chart for Genetic Programming 
 

 
 

 
 

 

Fig. Genetic Algorithm – program flow chart 
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2. Encoding 

Before a genetic algorithm can be put to work on any problem, a method is 

needed to encode potential solutions to that problem in a form so that a 

computer can process. 

- One common approach is to encode solutions as binary strings: sequences 

of 1's and 0's, where the digit at each position represents the  value of  

some aspect of the solution. 

Example : 

A Gene represents some data (eye color, hair color, sight, etc.). 

A chromosome is an array of genes. In binary form 

a  Gene  looks like : (11100010) 

a  Chromosome  looks like: Gene1 Gene2 Gene3 Gene4 

(11000010, 00001110, 001111010, 10100011) 

A chromosome should in some way contain information about solution 

which it represents; it thus requires encoding. The most popular way of 

encoding is a binary string like : 

Chromosome 1 : 1101100100110110 

Chromosome 2 : 1101111000011110 

Each bit in the string represent some characteristics of the solution. 
 

- There are many other ways of encoding, e.g., encoding values as integer or 

real numbers or some permutations and so on. 

- The virtue of these encoding method depends on the problem to work on . 
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• Binary Encoding 

Binary encoding is the most common to represent information contained. 

In genetic algorithms, it was first used because of its relative simplicity. 

- In binary encoding, every chromosome is a string of bits : 0 or 1, like 

Chromosome 1: 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 

Chromosome 2: 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 

- Binary encoding gives many possible chromosomes even with a small 

number of alleles ie possible settings for a trait (features). 

- This encoding is often not natural for many problems and sometimes 

corrections must be made after crossover and/or mutation. 

Example 1: 
 

One variable function, say 0 to 15 numbers, numeric values, 

represented by 4 bit binary string. 
 

Numeric 
value 

4–bit 
string 

Numeric 
value 

4–bit 
string 

Numeric 
value 

4–bit 
string 

0 0 0 0 0 6 0 1 1 0 12 1 1 0 0 

1 0 0 0 1 7 0 1 1 1 13 1 1 0 1 

2 0 0 1 0 8 1 0 0 0 14 1 1 1 0 

3 0 0 1 1 9 1 0 0 1 15 1 1 1 1 

4 0 1 0 0 10 1 0 1 0   

5 0 1 0 1 11 1 0 1 1   
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• Value Encoding 

The Value encoding can be used in problems where values such as real 

numbers are  used. Use of binary encoding for this type of problems  

would be difficult. 

1. In value encoding, every chromosome is a sequence of some values. 

2. The Values can be anything connected to the problem, such as : 

real numbers, characters or objects. 

Examples : 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 
 

3. Value  encoding  is often necessary to develop some new types of 

crossovers and mutations specific for the problem. 
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• Permutation Encoding 

Permutation encoding can be used in ordering problems, such as traveling 

salesman problem or task ordering problem. 

1. In permutation encoding, every chromosome is a string of numbers 

that represent a position in a sequence. 

 
 

2. Permutation encoding is useful for ordering problems. For some 

problems, crossover and mutation corrections must be  made to  

leave the chromosome consistent. 

Examples : 
 

1. The Traveling Salesman problem: 

There are cities and given distances between them. Traveling 

salesman has to visit all of them, but he does not want to travel more 

than necessary. Find a sequence of cities with a minimal traveled 

distance. Here, encoded chromosomes describe the order of cities the 

salesman visits. 

 
2. The Eight Queens problem : 

There are eight queens. Find a way to place them on a chess board  

so that no two queens  attack  each  other.  Here,  encoding  

describes the position of a queen on each row. 
 

Chromosome A 1 5 3 2 6 4 7 9 8 

Chromosome B 8 5 6 7 2 3 1 4 9 
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• Tree Encoding 

Tree encoding is used mainly for evolving programs or expressions. 

For genetic programming : 

- In tree encoding, every chromosome is a tree of some objects, such as 

functions or commands in programming language. 

- Tree encoding is useful for evolving programs or any other structures 

that can be encoded in trees. 

- The crossover and mutation can be done relatively easy way . 

Example : 
 

 

Fig. Example of Chromosomes with tree encoding 
 

Note : Tree encoding is good for evolving programs. The programming 

language LISP is often used. Programs in LISP can be easily parsed as a 

tree, so the crossover and mutation is relatively easy. 
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3. Operators of Genetic Algorithm 
 

Genetic  operators  used in  genetic  algorithms maintain genetic diversity. 

Genetic diversity or variation is a necessity for the process of evolution. 

Genetic operators are analogous to those which occur in the natural world: 

- Reproduction (or Selection) ; 

- Crossover (or Recombination); and 

- Mutation. 
 

In addition to these operators, there are some parameters of GA. 

One important parameter is Population size. 

- Population size says how many chromosomes are in population (in one 

generation). 

- If there are only few chromosomes, then GA would have a few possibilities 

to perform crossover and only a small part of search space is explored. 

- If there are many chromosomes, then GA slows down. 
 

- Research shows that after some limit, it is not useful to increase population 

size, because it does not help in solving the problem faster. The population 

size depends on the type of encoding and the problem. 
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3.1 Reproduction, or Selection 
 

Reproduction is  usually  the first operator applied on population. From  

the population, the chromosomes are selected to be parents to crossover 

and produce offspring. 

The problem is how to select these chromosomes ? 

According to Darwin's evolution theory "survival of the fittest" – the best 

ones should survive and create new offspring. 

- The Reproduction operators are also called Selection operators. 

- Selection means extract a subset of genes from an existing population, 

according to any definition of quality. Every gene has a meaning, so 

one can derive from the gene a kind of quality measurement called 

fitness function. Following this quality (fitness value), selection can be 

performed. 

- Fitness function quantifies the optimality of a solution (chromosome) so 

that a particular solution may be ranked against all the other solutions. 

The function depicts the closeness of a given ‘solution’ to the desired 

result. 

Many reproduction operators exists and they all essentially do same thing. 

They pick from current population the strings of above average and insert 

their multiple copies in the mating pool in a probabilistic manner. 

The most commonly used methods of selecting chromosomes for parents 

to crossover are : 

- Roulette wheel selection, - Rank selection 

- Boltzmann selection, - Steady state selection. 

- Tournament selection, 
 
 

The Roulette wheel and Boltzmann selections methods are illustrated next. 
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• Example of Selection 

Evolutionary Algorithms is to maximize the function f(x) = x2 with x in  

the integer interval  [0 , 31], i.e., x = 0, 1, . . . 30, 31. 

1. The first step is encoding of chromosomes; use binary representation 

for integers; 5-bits are used to represent integers up to 31. 

2. Assume that the population size is 4. 

3. Generate initial population at random. They are chromosomes or 

genotypes; e.g., 01101, 11000, 01000, 10011. 

4. Calculate fitness value for each individual. 

(a) Decode the individual into an integer (called phenotypes), 

01101 ® 13; 11000 ® 24; 01000 ® 8; 10011 ® 19; 

(b) Evaluate the fitness according to f(x) = x2 , 

13 ® 169; 24 ® 576; 8 ® 64; 19 ® 361. 

5. Select parents (two individuals)  for crossover  based   on   their fitness 

in pi.   Out of many  methods for selecting  the  best chromosomes, if 

roulette-wheel selection is used, then the probability of the i th string 
n 

in the population is pi = F i / ( S 
j=1 

F j ) , where 

F i is fitness for the string i in the population, expressed as f(x)  

pi is probability of the string i being selected, 

n is no of individuals in the population, is population size, n=4 

n * pi is expected count 
 

String No Initial 
Population 

X value Fitness Fi 
f(x) = x2 

p i Expected count 
N * Prob i 

1 0 1 1 0 1 13 169 0.14 0.58 

2 1 1 0 0 0 24 576 0.49 1.97 

3 0 1 0 0 0 8 64 0.06 0.22 

4 1 0 0 1 1 19 361 0.31 1.23 

Sum  1170 1.00 4.00 

Average  293 0.25 1.00 

Max  576 0.49 1.97 

The string no 2 has maximum chance of selection. 
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• Roulette wheel selection (Fitness-Proportionate Selection) 

Roulette-wheel selection, also known as Fitness Proportionate Selection, is 

a genetic operator, used for selecting potentially useful solutions for 

recombination. 

In fitness-proportionate selection : 

- the chance of an individual's being selected is proportional to its 

fitness, greater or less than its competitors' fitness. 

- conceptually, this can be thought as a game of Roulette. 
 
 

1 
 
 
 
 
 
 
 
 
 
 

20% 

5 
Fig. Roulette-wheel Shows 8 

individual with fitness 

The Roulette-wheel simulates 8 

individuals with fitness values Fi, 

marked at its circumference; e.g., 

- the 5th individual has a  higher 

fitness than others, so the wheel 

would choose the 5th  individual 

more than other individuals . 

- the fitness of the individuals is 

calculated as  the  wheel   is   spun 

n =  8  times,  each time selecting 

an instance, of the  string,  chosen 

by the wheel pointer. 

Probability of i th   string  is pi 
 
= F i 

n 
/ ( S 

j=1 

 
F j ) , where 

n  = no of individuals, called  population size;  pi  = probability  of  ith 

string   being selected;   Fi  = fitness   for ith  string in the population. 

Because the   circumference   of   the   wheel   is  marked   according to 

a string's fitness, the Roulette-wheel  mechanism is expected to 
make F 

 
F 

copies of the ith string. 
 

 

Average fitness  = F  F j / n ; Expected count = (n =8 ) x pi 
N=5 

Cumulative Probability5 = S pi 
i=1 

 

 
20%  

5%  
9% 

 
8% 

 
13% 

 
8% 17% 
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3.2 Crossover 
 

Crossover is a genetic operator that combines (mates) two chromosomes 

(parents) to produce a new chromosome (offspring). The idea behind 

crossover is that the new chromosome may be better than both of the 

parents if it takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable crossover 

probability. Crossover selects genes from parent chromosomes and 

creates a new offspring. 

The Crossover operators are of many types. 

- one simple way is, One-Point crossover. 

- the others are Two Point, Uniform, Arithmetic, and Heuristic crossovers. 
 

The operators are selected based on the way chromosomes are encoded. 
 



SC – GA - Operators 
 

• One-Point Crossover 

One-Point crossover operator randomly selects one crossover point and 

then copy everything before this point from the first parent and then 

everything after the crossover point copy from the second parent. The 

Crossover would then look as shown below. 

Consider the two parents selected for crossover. 
 

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0 

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0 
 
 

Interchanging the parents chromosomes after the crossover points - 

The Offspring produced are : 

Offspring 1   1 1 0 1 1 | 1 1 0 0 0 0 1 1 1 1 0 

Offspring 2   1 1 0 1 1 | 0 0 1 0 0 1 1 0 1 1 0 

 
Note : The symbol, a vertical line, | is the chosen crossover point. 
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• Two-Point Crossover 

Two-Point crossover operator randomly selects two crossover points within 

a chromosome then interchanges the two parent chromosomes between 

these points to produce two new offspring. 

Consider the two parents selected for crossover : 
 

Parent 1 1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 

Parent 2 1 1 0 1 1 | 1 1 0 0 0 0 1 | 1 1 1 0 
 
 

Interchanging the parents chromosomes between the crossover points - 

The Offspring produced are : 

Offspring 1   1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 

Offspring 2   1 1 0 1 1 | 0 0 1 0 0 1 1 | 0 1 1 0 
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• Uniform Crossover 

Uniform crossover operator decides (with some probability – know as the 

mixing ratio) which parent will contribute how the gene values in the 

offspring chromosomes. The crossover operator allows the parent 

chromosomes to be mixed at  the gene level rather than the segment 

level (as with one and two point crossover). 

Consider the two parents selected for crossover. 
 

Parent 1 

Parent 2 
 
 

If the mixing ratio is 0.5 approximately, then half of the genes in the 

offspring will come from parent 1 and other half will come from parent 2. 

The possible set of offspring after uniform crossover would be: 
 

Offspring 1 11 12 02 11 11 12 12 02 01 01 02 11 12 11 11 02 

Offspring 2 12 11 01 12 12 01 01 11 02 02 11 12 01 12 12 01 

 
Note: The subscripts indicate which parent the gene came from. 

 

1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 

1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 
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• Arithmetic 

Arithmetic crossover operator linearly combines two parent chromosome 

vectors to produce two new offspring according to the equations: 

Offspring1 = a * Parent1 + (1- a) * Parent2 

Offspring2 = (1 – a) * Parent1 + a * Parent2 

where a is a random weighting factor chosen before each crossover 

operation. 

Consider two parents (each of 4 float genes) selected for crossover: 
 

Parent 1 (0.3) (1.4) (0.2) (7.4) 

Parent 2 (0.5) (4.5) (0.1) (5.6) 

 
Applying the above two equations and assuming the weighting 

factor a = 0.7, applying above equations, we get two resulting offspring. 

The possible set of offspring after arithmetic crossover would be: 

Offspring 1 (0.36) (2.33) (0.17) (6.87) 

Offspring 2 (0.402) (2.981) (0.149) (5.842) 
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3.3 Mutation 
 

After a crossover is performed, mutation takes place. 

Mutation is a genetic operator used to maintain genetic diversity from  

one generation of a population of chromosomes to the next. 

Mutation occurs during evolution according to a user-definable mutation 

probability, usually set to fairly low value, say 0.01 a good first choice. 

Mutation alters one or more gene values in a chromosome from its initial 

state. This can result in entirely new gene values  being added to the  

gene pool. With the new gene values, the genetic algorithm may be able 

to arrive at better solution than was previously possible. 

Mutation is an important part of the genetic search, helps to prevent the 

population from stagnating at any local optima. Mutation is intended to 

prevent the search falling into a local optimum of the state space. 

 
The Mutation operators are of many type. 

- one simple way is, Flip Bit. 

- the others are Boundary, Non-Uniform, Uniform, and Gaussian. 

The operators are selected based on  the  way  chromosomes  are 

encoded . 
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• Flip Bit 

The mutation operator simply inverts the value of the chosen gene. 

i.e. 0 goes to 1 and 1 goes to 0. 

This mutation operator can only be used for binary genes. 

 
Consider the two original off-springs selected for mutation. 

 
Original offspring 1 

Original offspring 2 
 

Invert  the value of the chosen gene  as  0 to 1 and 1 to 0 
 

The Mutated Off-spring produced are : 

Mutated  offspring 1 

Mutated  offspring 2 
 

1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 

1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 

 

1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 

1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 0 
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4. Basic Genetic Algorithm : 
 

Examples to demonstrate and explain : Random population, Fitness, Selection, 

Crossover, Mutation, and Accepting. 

• Example 1 : 
Maximize the function f(x) = x2 over the range of integers from 0 . . . 31. 

 
Note : This function could be solved by a variety of traditional methods 

such as  a hill-climbing algorithm which uses the derivative. 

One way is to : 

- Start from any integer x in the domain of f 

- Evaluate at this point x the derivative f’ 

- Observing that the derivative is +ve, pick a new x which is at a small 

distance in the +ve direction from current x 

- Repeat until x = 31 
 

See, how a genetic algorithm would approach this problem ? 
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[ continued from previous slide ] 

Genetic Algorithm approach to problem - Maximize the function f(x) = x2 
 

1. Devise a means to represent a solution to the problem : 

Assume, we represent x with five-digit unsigned binary integers. 

2. Devise a heuristic for evaluating the fitness of any particular solution : 

The function f(x) is simple, so it is easy to use the f(x) value itself to rate 

the  fitness  of a solution; else we might have considered a more simpler 

heuristic that would more or less serve the same purpose. 

3. Coding - Binary and the String length : 

GAs often process binary representations of solutions. This works well, 

because crossover and mutation can be clearly defined for binary solutions.  

A Binary string of length 5 can represents 32 numbers (0 to 31). 

4. Randomly generate a set of solutions : 

Here, considered a population of four solutions. However, larger populations 

are used in real applications to explore a larger part of the search. Assume, 

four randomly generated solutions as : 01101, 11000, 01000,  10011.  

These are chromosomes or genotypes. 

5. Evaluate the fitness of each member of the population : 

The calculated fitness values for each individual are - 

(a) Decode the individual into an integer (called phenotypes), 

01101 ® 13; 11000 ® 24; 01000 ® 8; 10011 ® 19; 

(b) Evaluate the fitness according to f(x) = x 2 , 

13 ® 169; 24 ® 576; 8 ® 64; 19 ® 361. 

(c) Expected count   = N * Prob i   ,  where N is the number of 

individuals in the population called population size, here N = 4. 

Thus the evaluation of the initial population summarized in table below . 
 

String No 
i 

Initial 
Population 

(chromosome) 

X value 
(Pheno 
types) 

Fitness 
f(x) = x2 

Prob i 
(fraction 
of total) 

Expected count 
N * Prob i 

1 0 1 1 0 1 13 169 0.14 0.58 
2 1 1 0 0 0 24 576 0.49 1.97 
3 0 1 0 0 0 8 64 0.06 0.22 
4 1 0 0 1 1 19 361 0.31 1.23 

Total (sum)  1170 1.00 4.00 
Average  293 0.25 1.00 

Max  576 0.49 1.97 

Thus, the string no 2 has maximum chance of selection. 
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6. Produce a new generation of solutions by picking from the existing 

pool of solutions with a preference for solutions which are better  

suited than others: 

We divide the range into four bins, sized according to the relative fitness of 

the solutions which they represent. 

Strings Prob i Associated Bin 

0 1 1 0 1 0.14 0.0 . . . 0.14 
1 1 0 0 0 0.49 0.14 . . . 0.63 
0 1 0 0 0 0.06 0.63 . . . 0.69 
1 0 0 1 1 0.31 0.69 . . . 1.00 

By generating 4 uniform (0, 1) random values and seeing which bin they fall 

into we pick the four strings that will form the basis for the next generation. 

Random No Falls into bin Chosen string 

0.08 0.0 . . . 0.14 0 1 1 0 1 
0.24 0.14 . . . 0.63 1 1 0 0 0 
0.52 0.14 . . . 0.63 1 1 0 0 0 
0.87 0.69 . . . 1.00 1 0 0 1 1 

7. Randomly pair the members of the new generation 

Random number generator decides for us to mate the first two strings 

together and the second two strings together. 

8. Within each pair swap parts of the members solutions to create 

offspring which are a mixture of the parents : 

For the   first pair of strings: 0 1 1 0 1 , 1 1 0 0 0 

- We randomly select the crossover point to be after the fourth digit. 

Crossing these two strings at that point yields: 

0 1 1 0 1 Þ 0 1 1 0 |1 Þ 0 1 1 0 0 
 

1 1 0 0 0  Þ 1 1 0 0 |0 Þ 1 1 0 0 1 

For the second   pair of strings: 1 1 0 0 0 , 1 0 0 1 1 

- We randomly select the crossover point to be after the second digit. 

Crossing these two strings at that point yields: 

 
 
 

1 1 0 0 0 Þ 1 1 |0 0 0 Þ 1 1 0 1 1 

1 0 0 1 1 Þ 1 0 |0 1 1 Þ 1 0 0 0 0 
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9. Randomly mutate a very small fraction of genes in the population : 

With a typical mutation probability of per bit it happens that none of the bits 

in our population are mutated. 

10. Go back and re-evaluate fitness of the population (new generation) : 

This would be the first step in generating a new generation of solutions. 

However it is also useful in showing the way that a single iteration of the 

genetic algorithm has improved this sample. 

String No Initial 
Population 

(chromosome) 

X value 
(Pheno 
types) 

Fitness 
f(x) = x2 

Prob i 
(fraction 
of total) 

Expected count 

1 0 1 1 0 0 12 144 0.082 0.328 
2 1 1 0 0 1 25 625 0.356 1.424 
3 1 1 0 1 1 27 729 0.415 1.660 
4 1 0 0 0 0 16 256 0.145 0.580 

Total (sum)  1754 1.000 4.000 
Average  439 0.250 1.000 

Max  729 0.415 1.660 

Observe that : 

1. Initial populations : At start step 5 were 

0 1 1 0 1 ,  1 1 0 0 0 , 0 1 0 0 0  ,  1 0 0 1 1 

After one cycle, new populations, at step 10 to act as initial population 
 

0 1 1 0 0 ,  1 1 0 0 1 , 1 1 0 11  , 1 0 0 0 0 
 

2. The total fitness has gone from 1170 to 1754 in a single generation. 

3. The algorithm has already come up with the string 11011 (i.e x = 27) as 

a possible solution. 
 

 

 
H.W./ Find the new generation by applying (GA) of the population with 6 chromosomes [(4,11,3,7), 
(9,1,6,8), (7,12,5,3), (11,8,9,3), (15,6,1,4), (8,13,2,10)] for the function: 
f (w, x, y, z) =wx+xy+yz. With cross-over from the 2nd Gene to 3rd gene and Mutation of two bits in 
each to minimize the result of f (w, x, y, z). 
 
Hint:  
Chromosome1= 0100 1011 0011 0111 where each of w, x, y, z is gene. And so on to other Chromosomes 

                                 W       X        Y         Z 


