VLSI Circuits and Design Inverter

and
Dynamic View

NMOS/PMOS Ratio

- So far we sized PMOS and NMOS so that they have matching R_{eq} 's (ratio of 3 to 3.5)
- symmetrical VTC
- equal high-to-low and low-to-high propagation delays
- When cascading similar inverters and if speed is the only concern, reduce the width of the PMOS device!
- wide PMOS improves $\mathrm{t}_{\mathrm{pLH}}$ but degrades $\mathrm{t}_{\mathrm{pHL}}$ due to larger parasitic capacitance
- Define:
- $r=R_{\text {eqp }} / R_{\text {eqn }}$ (resistance ratio of identically-sized PMOS and NMOS)
- $\beta=(W / L)_{p} /(W / L)_{n}$

If wiring cap can be ignored, delay is minimum when $\beta_{\text {opt }}=\sqrt{r} \quad$ (read text p. 204 for derivation)

In slide "CMOS Inverter", the VTC simulation on p. 20 was obtained using $(\mathrm{W} / \mathrm{L})_{\mathrm{p}} /(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=3.4$. For this inverter, $\mathrm{V}_{\mathrm{M}} \sim 1.25 \mathrm{~V}$.

When we use smaller PMOS - get better speed at the cost of VTC symmetry and noise margin.

Widening PMOS of course improves $t_{\text {pLH }}$ because it improves $R_{\text {eq }}$ of the PMOS.

If wiring capacitance is not negligible, larger values of β should be used. The surprising result is that smaller device sizes (and hence smaller area) yield a faster design at the expense of VTC symmetry and noise margin.

PMOS/NMOS Ratio Effects

β of 2.4 (= $31 \mathrm{k} \Omega / 13 \mathrm{k} \Omega$) gives symmetrical delay response (symmetrical VTC too)
β of 1.6 to 1.9 gives optimal delay performance

Inverter - Dynamic View. 3

From slide "MOS Transistor" p. 23, $\mathrm{R}_{\text {eq }}$ for PMOS and NMOS are $31 \mathrm{k} \Omega$ and $13 \mathrm{k} \Omega$. For both transistors, $(\mathrm{W} / \mathrm{L})=1$.

For symmetrical characteristics, we want $R_{p u}=R_{p d}$. Hence we make $(W / L)_{p}=$ $2.4(\mathrm{~W} / \mathrm{L})_{n}$ i.e. $\beta=r=2.4$. From graph, delay is indeed symmetrical for this value of β.

In this example $r=31 / 13=2.4$. Theoretically, for \min delay $\beta_{\text {opt }}=2.4^{0.5}=1.5$. From plot above, min delay is actually at $\beta=1.9$.

Device Sizing for Performance

- Divide capacitive load, C_{L}, into
- $\mathrm{C}_{\text {int }}$: intrinsic - diffusion and Miller effect (both proportional to W)
- $\mathrm{C}_{\text {ext }}$: extrinsic - wiring and fanout

$$
t_{p}=0.69 R_{\text {eq }} C_{\text {int }}\left(1+C_{\text {ext }} / C_{\text {int }}\right)=t_{p 0}\left(1+C_{e x t} / C_{\text {int }}\right)
$$ $t_{p 0}=0.69 R_{\text {eq }} \mathrm{C}_{\text {int }}$ is the intrinsic (unloaded) gate delay

- Widening both PMOS and NMOS by a factor S reduces $R_{\text {eq }}$ by an identical factor ($R_{e q}=R_{\text {ref }} / S$), but raises the intrinsic capacitance by the same factor ($\mathrm{C}_{\text {int }}=\mathrm{SC}_{\text {intrefef }}$)

$$
\mathrm{t}_{\mathrm{p}}=0.69 \mathrm{R}_{\text {ref }} \mathrm{C}_{\text {intref }}\left(1+\mathrm{C}_{\text {ext }} / \mathrm{SC}_{\text {intreft }}\right)=\mathrm{t}_{\mathrm{p} 0}\left(1+\mathrm{C}_{\text {ext }} / \mathrm{SC}_{\text {intref }}\right)
$$

- $\mathrm{t}_{\mathrm{p} 0}$ is independent of the sizing of the gate; with no load the drive of the gate is totally offset by the increased capacitance
- any S sufficiently larger than $\left(C_{\text {ext }} / C_{\text {int }}\right)$ yields the best performance gains with least area impact

Inverter - Dynamic View. 4

Making S infinitely large yields the maximum obtainable performance gain, i.e. min delay but of course area is also infinitely large too.

Sizing Impacts on Delay

While sizing up an inverter reduces its delay, it also increases its input capacitance - impacting the delay of the driving gate!

Impact of Fanout on Delay

- Extrinsic capacitance, $\mathrm{C}_{\text {ext }}$, is a function of the fanout of the gate - the larger the fanout, the larger the external load.

First determine the input loading effect of the inverter. Both C_{g} and $\mathrm{C}_{\text {int }}$ are proportional to gate size.

- we can expect $C_{\text {int }}=\gamma C_{g}$.

$$
\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{p} 0}\left(1+\mathrm{C}_{\mathrm{ext}} / \gamma \mathrm{C}_{\mathrm{g}}\right)=\mathrm{t}_{\mathrm{p} 0}(1+\mathrm{f} / \gamma) .
$$

where $\mathrm{f}=\mathrm{C}_{\text {ext }} / \mathrm{C}_{\mathrm{g}} \quad$ effective fan-out factor.
Delay of an inverter is a function of the ratio between its external load capacitance and its input gate capacitance.

Inverter Chain

- Real goal is to minimize the delay through an inverter chain

the delay of the j-th inverter stage is (ignore wire cap)

$$
\begin{array}{ll}
& \mathrm{t}_{\mathrm{p}, \mathrm{j}}=\mathrm{t}_{\mathrm{p} 0}\left(1+\mathrm{C}_{\mathrm{g}, \mathrm{j}+1} 1\left(\gamma \mathrm{C}_{\mathrm{g}, \mathrm{j}}\right)\right)=\mathrm{t}_{\mathrm{p} 0}\left(1+\mathrm{f}_{\mathrm{j}} / \gamma\right) \\
\text { and } & \mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{p} 1}+\mathrm{t}_{\mathrm{p} 2}+\ldots+\mathrm{t}_{\mathrm{pN}} \\
\text { so } & \mathrm{t}_{\mathrm{p}}=\sum \mathrm{t}_{\mathrm{p}, \mathrm{j}}=\mathrm{t}_{\mathrm{p} 0} \Sigma\left(1+\mathrm{C}_{\mathrm{g}, \mathrm{j}+1} 1\left(\gamma \mathrm{C}_{\mathrm{g}, \mathrm{j}}\right)\right)
\end{array}
$$

- If C_{L} is given
- How should the inverters be sized?
- How many stages are needed to minimize the delay?

Sizing the Inverters in the Chain

- The optimum size of each inverter is the geometric mean of its neighbors

$$
C_{g, j}=\sqrt{C_{g, j-1} C_{g, j+1}}
$$

- We should size up each inverter by the same factor f wrt the preceding gate
- each inverter has the same effective fan-out
- each inverter has the same delay
- If $\mathrm{C}_{\mathrm{g}, 1}$ and C_{L} are given (refer text pp. 207-208 for derivation)

$$
f=\sqrt[N]{\frac{C_{L}}{C_{g, 1}}}=\sqrt[N]{F}
$$

where $\mathrm{F}=\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{g}, 1}$ represents the overall effective fan-out of the circuit

- The minimum delay through the inverter chain is

$$
t_{p}=N_{t_{p 0}}\left(1+\frac{\sqrt[N]{F}}{\gamma}\right)
$$

Inverter - Dynamic View. 8

Next question is, "what is the best N to minimize the delay for a given F ?"

Before that, an example of inverter chain sizing.

Example of Inverter Chain Sizing

$\square C_{L} / C_{g, 1}$ has to be evenly distributed over $N=3$ inverters

$$
\begin{gathered}
\mathrm{F}=\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{g}, 1}=8 \\
f=\sqrt[3]{8}=2
\end{gathered}
$$

Determining N: Optimal Number of Inverters

\square What is the optimal value for N given F ?

- if the number of stages is too large, the intrinsic delay of the stages dominate
- if the number of stages is too small, the effective fan-out of each stage dominate
- The optimum N is found by differentiating the minimum delay expression divided by the number of stages and setting the result to 0 , giving

$$
\gamma+\sqrt[N]{F}-\frac{\sqrt[N]{F} \ln F}{N}=0
$$

\square For $\gamma=0$ (ignoring self-loading i.e. $\mathrm{C}_{\text {int }}=0$)

- $\mathrm{N}=\ln \mathrm{F}$
- hence the effective fan-out $f=e=2.7$
\square For $\gamma=1$ (the typical case) the optimum effective fan-out (tapering factor) turns out to be close to 3.6
Inverter - Dynamic View. 10

$$
\begin{aligned}
& t_{p}= N t_{p 0}\left(1+\frac{F^{1 / N}}{\gamma}\right) \\
& \begin{aligned}
\frac{d}{d N} t_{p} & =t_{p 0}+\frac{t_{p 0}}{\gamma} \frac{d}{d N} N F^{1 / N} \\
& =t_{p 0}+\frac{t_{p 0}}{\gamma}\left(F^{1 / N} \frac{d}{d N} N+N \frac{d}{d N} F^{1 / N}\right) \\
& =t_{p 0}+\frac{t_{p 0}}{\gamma}\left(F^{1 / N}+N(\ln F) F^{1 / N} \frac{d}{d N} \frac{1}{N}\right) \\
& =t_{p 0}+\frac{t_{p 0}}{\gamma}\left(F^{1 / N}-N(\ln F) F^{1 / N} \frac{1}{N^{2}}\right) \\
& =t_{p 0}+\frac{t_{p 0}}{\gamma}\left(F^{1 / N}-\frac{1}{N}(\ln F) F^{1 / N}\right)
\end{aligned}
\end{aligned}
$$

Set $\mathrm{dt}_{\mathrm{p}} / \mathrm{dN}=0$, we get $\gamma+F^{1 / N}-\frac{1}{N}(\ln F) F^{1 / N}=0$.
Derivation for optimum fan-out:
$N=\ln F$
$\therefore \mathrm{e}^{\mathrm{N}}=\mathrm{F}$
But effective fan-out $f=F^{1 / N}$, or $f^{N}=F$
$\therefore \mathrm{e}^{\mathrm{N}}=\mathrm{f}^{\mathrm{N}}$
$\therefore \mathrm{f}=\mathrm{e}$ for optimum delay.

Optimum Effective Fan-Out

- Choosing f larger than optimum has little effect on delay
- common practice to use $\mathrm{f}=4$ (for $\gamma=1$)
- if f is too small, then we need more stages to drive load cap delay could be substantial

Inverter - Dynamic View. 11

Rewrite $\gamma+F^{1 / N}-\frac{1}{N}(\ln F) F^{1 / N}=0$ in terms of f , where $\mathrm{f}=\mathrm{F}^{1 / \mathrm{N}}$

$$
\begin{aligned}
& \gamma+f-\frac{1}{N}(N \ln f) f=0 \\
& \gamma+f-f \ln f=0
\end{aligned}
$$

This equation has to be solved numerically to find optimum f .

Impact of Buffer Staging for Large C^{\prime}

\mathbf{F} $\mathbf{(\gamma = 1)}$	Unbuffered	Two Stage Chain	Opt. Inverter Chain
10	$11 \mathrm{t}_{\mathrm{p} 0}$	$8.3 \mathrm{t}_{\mathrm{p} 0}$	$8.3 \mathrm{t}_{\mathrm{p} 0}$
100	$101 \mathrm{t}_{\mathrm{p} 0}$	$22 \mathrm{t}_{\mathrm{p} 0}$	$16.5 \mathrm{t}_{\mathrm{p} 0}$
1,000	$1001 \mathrm{t}_{\mathrm{p} 0}$	$65 \mathrm{t}_{\mathrm{p} 0}$	$24.8 \mathrm{t}_{\mathrm{p} 0}$
10,000	$10,001 \mathrm{t}_{\mathrm{p} 0}$	$202 \mathrm{t}_{\mathrm{p} 0}$	$33.1 \mathrm{t}_{\mathrm{p} 0}$

- Impressive speed-ups with optimized cascaded inverter chain for very large capacitive loads.

Inverter - Dynamic View. 13

Exercise:

How many stages is needed to obtain minimum delay for $F=1,000$?

How many stages is needed to obtain minimum delay for $F=10,000$?

