VLSI Circuits and Design

Logical Effort

Outline

- Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- Chip designers face a bewildering array of choices
- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?
- Logical effort is a method to make these decisions
- Uses a simple model of delay

- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: $d=f+p$
- f: effort delay = gh (a.k.a. stage effort)
- Again has two components

$$
\begin{aligned}
& d=\frac{d_{a b s}}{\tau} \\
& \tau= 3 R C \\
& \approx \quad 3 \mathrm{ps} \text { in } 65 \mathrm{~nm} \text { process } \\
& 60 \mathrm{ps} \text { in } 0.6 \mu \mathrm{~m} \text { process }
\end{aligned}
$$

- g: logical effort
- Measures relative ability of gate to deliver current
- $g \equiv 1$ for inverter
- h: electrical effort $=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}$
- Ratio of output to input capacitance
- Sometimes called fanout
- p : parasitic delay
- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Delay Plots

$$
\begin{aligned}
d \quad & =f+p \\
& =g h+p
\end{aligned}
$$

- What about NOR2?

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

$$
\begin{aligned}
& C_{\text {in }}=3 \\
& g=3 / 3
\end{aligned}
$$

$C_{\text {in }}=4$
$g=4 / 3$
7

$$
C_{i n}=5
$$

$$
g=5 / 3
$$

Catalog of Gates

- Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		$4 / 3$	$5 / 3$	$6 / 3$	$(n+2) / 3$	
NOR		$5 / 3$	$7 / 3$	$9 / 3$	$(2 n+1) / 3$	
Tristate / mux	2	2	2	2	2	
XOR, XNOR		4,4	$6,12,6$	$8,16,16,8$		

Catalog of Gates

- Parasitic delay of common gates
- In multiples of $\mathrm{p}_{\mathrm{inv}}(\approx 1)$

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		2	3	4	n	
NOR		2	3	4	n	
Tristate / mux	2	4	6	8	2 n	
XOR, XNOR		4	6	8		

Example: Ring Oscillator

- Estimate the frequency of an N -stage ring oscillator

Logical Effort: $\quad \mathrm{g}=1$
Electrical Effort: $\mathrm{h}=1$
Parasitic Delay: $p=1$
Stage Delay: $\quad d=2$
31 stage ring oscillator in
$0.6 \mu \mathrm{~m}$ process has
frequency of $\sim 200 \mathrm{MHz}$
Frequency: $\quad f_{\text {osc }}=1 /\left(2 * N^{*} d\right)=1 / 4 N$

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort:
$\mathrm{g}=1$
Electrical Effort: $\mathrm{h}=4$
Parasitic Delay: $\quad \mathrm{p}=1$
Stage Delay: $\quad d=5$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$
G=\prod g_{i}
$$

- Path Electrical Effort

$$
H=\frac{C_{\text {outpath }}}{C_{\text {in-path }}}
$$

- Path Effort $\quad F=\prod f_{i}=\prod g_{i} h_{i}$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G=\prod g_{i}$
- Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$
- Path Effort

$$
F=\prod f_{i}=\prod g_{i} h_{i}
$$

- Can we write $\mathrm{F}=\mathrm{GH}$?

Paths that Branch

- No! Consider paths that branch:

$$
\begin{aligned}
& \mathrm{G}=1 \\
& \mathrm{H}=90 / 5=18 \\
& \mathrm{GH}=18 \\
& \mathrm{~h}_{1}=(15+15) / 5=6 \\
& \mathrm{~h}_{2}=90 / 15=6 \\
& \mathrm{~F}
\end{aligned}=\mathrm{g}_{1} \mathrm{~g}_{2} \mathrm{~h}_{1} \mathrm{~h}_{2}=36=2 \mathrm{GH} \text {, }
$$

Branching Effort

- Introduce branching effort
- Accounts for branching between stages in path

$$
b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}}
$$

$$
B=\prod b_{i}
$$

Note:

$$
\prod^{h_{i}=B H}
$$

- Now we compute the path effort
$-F=G B H$

Multistage Delays

- Path Effort Delay $D_{F}=\sum f_{i}$
- Path Parasitic Delay $P=\sum p_{i}$
- Path Delay $D=\sum d_{i}=D_{F}+P$

Designing Fast Circuits

$$
D=\sum d_{i}=D_{F}+P
$$

- Delay is smallest when each stage bears same effort

$$
\hat{f}=g_{i} h_{i}=F^{\frac{1}{N}}
$$

- Thus minimum delay of N stage path is $D=N F^{\frac{1}{N}}+P$
- This is a key result of logical effort
- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

- How wide should the gates be for least delay?

$$
\begin{gathered}
\hat{f}=g h=g \frac{C_{\text {out }}}{C_{i n}} \\
\Rightarrow C_{i n_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}
\end{gathered}
$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Example: 3-stage path

- Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Logical Effort $\mathrm{G}=(4 / 3)^{*}(5 / 3)^{*}(5 / 3)=100 / 27$
Electrical Effort
$H=45 / 8$
Branching Effort
$\mathrm{B}=3 * 2=6$
Path Effort
Best Stage Effort
$\mathrm{F}=\mathrm{GBH}=125$
Parasitic Delay
$\hat{f}=\sqrt[3]{F}=5$
Delay
$\mathrm{D}=3 * 5+7=22=4.4 \mathrm{FO} 4$

Example: 3-stage path

- Work backward for sizes

$$
\begin{aligned}
& y=45 *(5 / 3) / 5=15 \\
& x=\left(15^{*} 2\right) *(5 / 3) / 5=10
\end{aligned}
$$

Best Number of Stages

- How many stages should a path use?
- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$
\begin{aligned}
D & =N F^{1 / N}+P \\
& =N(64)^{1 / N}+N
\end{aligned}
$$

Derivation

- Consider adding inverters to end of path

$$
D=N F^{\frac{1}{N}}+\sum_{i=1}^{n_{1}} p_{i}+\left(N-n_{1}\right) p_{i n v}
$$

$\frac{\partial D}{\partial N}=-F^{\frac{1}{N}} \ln F^{\frac{1}{N}}+F^{\frac{1}{N}}+p_{i n v}=0$

- Define best stage effort $\rho=F^{\frac{1}{N}}$

$$
p_{i n v}+\rho(1-\ln \rho)=0
$$

Best Stage Effort

- $p_{i n v}+\rho(1-\ln \rho)=0$ has no closed-form
solution
- Neglecting parasitics ($\mathrm{p}_{\mathrm{inv}}=0$), we find $\rho=2.718$ (e)
- For $p_{\text {inv }}=1$, solve numerically for $\rho=3.59$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4<\rho<6$ gives delay within 15% of optimal
- We can be sloppy!
- I like $\rho=4$

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide
- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Number of Stages

- Decoder effort is mainly electrical and branching Electrical Effort:

$$
H=(32 * 3) / 10=9.6
$$

$$
\text { Branching Effort: } \quad B=8
$$

- If we neglect logical effort (assume $G=1$) Path Effort:

$$
\mathrm{F}=\mathrm{GBH}=76.8
$$

Number of Stages:

$$
N=\log _{4} F=3.1
$$

- Try a 3-stage design

Gate Sizes \& Delay

Logical Effort: $\mathrm{G}=1$ * $6 / 3 * 1=2$
Path Effort: $\quad \mathrm{F}=\mathrm{GBH}=154$
Stage Effort: $\hat{f}=F^{1 / 3}=5.36$
Path DelayD $=3 \hat{f}+1+4+1=22.1$
Gate sizes: $\quad z=96^{*} 1 / 5.36=18 \quad y=18^{* 2} / 5.36=6.7$

Comparison

- Compare many alternatives with a spreadsheet
- $D=N(76.8 G)^{1 / N}+P$

Design	N	\mathbf{G}	\mathbf{P}	\mathbf{D}
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	$20 / 9$	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	$20 / 9$	6	20.5
NAND2-INV-NAND2-INV	4	$16 / 9$	6	19.7
INV-NAND2-INV-NAND2-INV	5	$16 / 9$	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	$16 / 9$	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G=\prod g_{i}$
electrical effort	$h=\frac{C_{\text {ati }}}{C_{\text {min }}}$	$H=\frac{c_{\text {outmat }}}{C_{\text {mamat }}}$
branching effort		$B=\prod b_{i}$
effort	$f=g h$	$F=G B H$
effort delay	f	$D_{F}=\sum f_{i}$
parasitic delay	p	$P=\sum p_{i}$
delay	$d=f+p$	$D=\sum d_{i}=D_{F}+P$

Method of Logical Effort

1) Compute path effort

$$
F=G B H
$$

2) Estimate best number of stages $N=\log _{4} F$
3) Sketch path with N stages
4) Estimate least delay

$$
D=N F^{\frac{1}{n}}+P
$$

5) Determine best stage effort

$$
\hat{f}=F^{\frac{1}{x}}
$$

6) Find gate sizes

$$
\left.C_{i_{i}}=\frac{g_{i} C_{\text {out }}^{i}}{}\right)
$$

Limits of Logical Effort

- Chicken and egg problem
- Need path to compute G
- But don't know number of stages without G
- Simplistic delay model
- Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
- Maximum speed only
- Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~ 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4}$ F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
- But requires practice to master

