VLSI Circuits and Design

Logical Effort

Outline

- Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: d = f + p
- f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter
- h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

$$d = \frac{d_{abs}}{\tau}$$

 $\tau = 3RC$

 \approx 3 ps in 65 nm process 60 ps in 0.6 μm process

Delay Plots

$$d = f + p$$
$$= gh + p$$

What about NOR2?

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Catalog of Gates

Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

Catalog of Gates

- Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

31 stage ring oscillator in

0.6 μm process has

frequency of ~ 200 MHz

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$

Path Electrical Effort

$$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$$

• Path Effort
$$F = \prod f_i = \prod g_i h_i$$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$

• Path Electrical Effort
$$H = \frac{C_{out-path}}{C_{in-path}}$$

Path Effort

$$F = \prod f_i = \prod g_i h_i$$

Can we write F = GH?

Paths that Branch

No! Consider paths that branch:

G = 1
H = 90 / 5 = 18
GH = 18

$$h_1 = (15 + 15) / 5 = 6$$

 $h_2 = 90 / 15 = 6$
F = $g_1g_2h_1h_2 = 36 = 2GH$

Branching Effort

- Introduce branching effort
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:
$$\prod h_i = BH$$

- Now we compute the path effort
 - -F = GBH

Multistage Delays

• Path Effort Delay $D_F = \sum f_i$

- Path Parasitic Delay $P = \sum p_i$
- Path Delay $D = \sum d_i = D_F + P$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Example: 3-stage path

Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

G = (4/3)*(5/3)*(5/3) = 100/27

H = 45/8

B = 3 * 2 = 6

F = GBH = 125

 $\hat{f} = \sqrt[3]{F} = 5$

P = 2 + 3 + 2 = 7

Delay D = 3*5 + 7 = 22 = 4.4 FO4

Example: 3-stage path

Work backward for sizes

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit

inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Derivation

- Consider adding inverters to end of path

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

• Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

• $p_{inv} + \rho(1-\ln \rho) = 0$ has no closed-form

solution

- Neglecting parasitics ($p_{inv} = 0$), we find $\rho = 2.718$ (e)
- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

How sensitive is delay to using exactly the best

number of stages?

- $2.4 < \rho < 6$ gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3) / 10 = 9.6

Branching Effort: B = 8

If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = \log_4 F = 3.1$

Try a 3-stage design

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2

Path Effort: F = GBH = 154

Stage Effort: $\hat{f} = F^{1/3} = 5.36$

Path Delay $D = 3\hat{f} + 1 + 4 + 1 = 22.1$

Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

Comparison

- Compare many alternatives with a spreadsheet
- D = N(76.8 G) $^{1/N}$ + P

Design	N	G	Р	D
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{ m out}}{C_{ m in}}$	$H = rac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

$$F = GBH$$

2) Estimate best number of stages $N = \log_4 F$

$$N = \log_4 F$$

- 3) Sketch path with N stages
- 4) Estimate least delay

$$D = NF^{\frac{1}{N}} + P$$

5) Determine best stage effort

$$\hat{f} = F^{\frac{1}{N}}$$

6) Find gate sizes

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master