Lecture Five

Case 1:
$$V_{in}=0 \vee, V_{out}=5 \vee, V_{tn}=1 \vee, V_{tp}=-1 \vee$$
 Region A
NMOS $V_{GSN}=V_G - V_S = V_{in} - V_S=0-0 = 0 \vee$
 $\therefore V_{GSN} < V_{tn} \rightarrow \text{CUT-OFF}$
PMOS $V_{GSP}=V_G - V_S = V_{in} - V_{DD}=0-5 = -5 \vee$
 $\therefore V_{GSP} < V_{tP} \rightarrow -5 \vee < -1 \vee \rightarrow \text{ON (L/S)}$
 $V_{DSP}=V_D - V_S = V_{OUT} - V_{DD}=5 \vee -5 \vee = 0 \vee$
 $V_{GSP}-V_{tP}=-5 - (-1)=-4 \vee$
 $\therefore V_{DSP} > V_{GSP}-V_{tP} \rightarrow 0 > -4 \vee \rightarrow \text{Linear}$

Case 2:
$$V_{in}=1 \vee, V_{out}=5 \vee, V_{tn}=1 \vee, V_{tp}=-1 \vee \text{Region B}$$

NMOS $V_{GSN}=V_G - V_S = V_{in} - V_S=1-0 = 1 \vee$
 $\therefore V_{GSN}=V_{tn} \rightarrow \text{ON (L/S)}$
 $V_{DSN}=V_D - V_S = V_{out} - V_S = 5-0=5 \vee$
 $V_{DSN} > V_{GSN} - V_{tn} \rightarrow 5 > 1 - 1 \rightarrow 5 > 0 \rightarrow 0 \text{N} \rightarrow \text{NMOS in saturation}$
PMOS $V_{GSP}=V_G - V_S = V_{in} - V_{DD}=1-5 = -4 \vee$
 $\therefore V_{GSP} < V_{tP} \rightarrow \text{ON L/S}$
 $V_{DSP}=V_D - V_S = V_{OUT} - V_{DD}=5 \vee -5 \vee = 0 \vee$
 $V_{DSP} > V_{GSP} - V_{tp} \rightarrow 0 > -4 - (-1) \rightarrow 0 > -3 \rightarrow \text{Linear}$

Case 3:
$$V_{in}$$
=2.5 V, V_{out} =2.5 V, V_{tn} =1 V, V_{tp} =-1 V Region C
NMOS $V_{GSN} = V_G - V_S = V_{in} - V_S$ =2.5-0 =2.5 V
 $V_{GSN} > V_{tn} \rightarrow 2.5$ V >1V \rightarrow ON (L/S)
 $V_{DSN} = V_D - V_S = V_{out} - V_S$ =2.5-0=2.5V
 $V_{DSN} > V_{GSN} - V_{tn}$ =2.5 V> 2.5V-1V \rightarrow 2.5 V> 1.5V \rightarrow Saturation
PMOS $V_{GSP} = V_G - V_S = V_{in} - V_{DD}$ =2.5-5 =-2.5 V
 $V_{tp} > V_{GSP} \rightarrow -1$ V >-2.5V \rightarrow ON L/S
 $V_{DSP} = V_D - V_S = V_{OUT} - V_{DD}$ =2.5V -5V =-2.5 V
 $V_{DSP} < V_{GSP} - V_{tp} \rightarrow -2.5$ V <-2.5(-1) $\rightarrow -2.5$ < -1.5V \rightarrow Saturation

Case 4:
$$V_{in}$$
=4.0 V, V_{out} =1.0 V, V_{tn} =1 V, V_{tp} =-1 V Region D
NMOS $V_{GSN} = V_G - V_S = V_{in} - V_S$ =4.0-0 =4.0 V
 $V_{GSN} > V_{tn} \rightarrow 4.5 V > 1V \rightarrow ON (L/S)$
 $V_{DSN} = V_D - V_S = V_{out} - V_S = 1.0 - 0 = 1.0V$
 $V_{DSN} < V_{GSN} - V_{tn} 1.0 V < 3.V \rightarrow Linear$
PMOS $V_{GSP} = V_G - V_S = V_{in} - V_{DD} = 4.-5. = -1.0 V \rightarrow V_{GSP} = V_{tp} ON L/S$
 $V_{DSP} = V_D - V_S = V_{OUT} - V_{DD} = 1.0V - 5V = -4.0 V$
 $V_{DSP} < V_{GSP} - V_{tp} \rightarrow -4.0V < -1.-(-1) \rightarrow -4. < 0 V \rightarrow Saturation$

Case 5:
$$V_{in}$$
=5.0 V, V_{out} =0.0 V, V_{tn} =1 V, V_{tp} =-1 V Region E
NMOS $V_{GSN} = V_G - V_S = V_{in} - V_S$ =5.0-0 =5.0 V
 $V_{GSN} > V_{tn} \rightarrow 5.0 \text{ V} > 1 \text{V} \rightarrow \text{ON} (L/S)$
 $V_{DSN} = V_D - V_S = V_{out} - V_S = 0.0 - 0 = 0.0 \text{V}$
 $V_{DSN} < V_{GSN} - V_{tn} \rightarrow 0.0 \text{ V} < 4. \text{V} \rightarrow \text{Linear}$
PMOS $V_{GSP} = V_G - V_S = V_{in} - V_{DD} = 5.-5. = 0.0 \text{ V} \rightarrow V_{GSP} > V_{tp} \rightarrow \text{OFF}$

CMOS INVERTER REGION OPERATIONS

REGION	CONDITION	PMOS	NMOS	Ουτρυτ
А	$0 \le V_{in} \le V_{tn}$	Linear	Cut-off	$V_{out}=V_{DD}$
В	$V_{tn} \leq V_{in} \leq V_{DD}/2$	Linear	Saturation	V _{out} =V _{DD}
С	$V_{in} = V_{DD}/2$	Saturation	Saturation	<i>V_{out}</i> sharps droply
D	$V_{DD/2} \le V_{in} \le V_{DD} - \left V_{tp} \right $	Saturation	Linear	$V_{out} < V_{DD}/2$
E	$V_{in} > V_{DD} - \left V_{tp} \right $	Cut-off	Linear	V _{out} =0

Ideally, the voltage transfer curve (VTC) appears as an inverted stepfunction - this would indicate precise switching between on and off - but in real devices, a gradual transition region exists. The VTC indicates that for low input voltage, the circuit outputs high voltage; for high input, the output tapers off towards 0 volts. The slope of this transition region is a measure of quality - steep (close to -Infinity) slopes yield precise switching. The tolerance to noise can be measured by comparing the minimum input to the maximum output for each region of operation (on / off). This is more explicitly shown in the figure below.

Definition of noise margin

Noise margin : is a parameter intimately related to the transfer characteristics. It allows one to estimate the allowable noise voltage on the input of a gate so

that the output will not be affected. Noise margin (also called noise immunity) is specified in terms of two parameters - the low noise margin N_L , and the high noise margin N_{H} . Referring to above figure, N_{L} is defined as the difference in magnitude between the maximum LOW input voltage recognized by the driven gate and the maximum LOW output voltage of the driving gate. That is, $N_L = |V_{IL} - V_{OL}|$. Similarly, the value of N_H is the difference in magnitude between the minimum HIGH output voltage of the driving gate and the minimum HIGH input voltage recognizable by the driven gate. That is, $N_{MH} = |V_{OH} - V_{IH}|$. Where $V_{IH}|$: minimum HIGH input voltage, V_{IL} : maximum LOW input voltage, V_{OH} : minimum HIGH output voltage, V_{OI}^{IL} : maximum LOW output voltage.

Inverter Dynamic Characteristics

• Fig. below shows the dynamic characteristics of a CMOS inverter. The following are some formal definitions of temporal parameters of digital circuits. All percentages are of the steady state values.

Dynamic characteristics of CMOS inverter

- Rise Time (t_r) : Time taken to rise from 10% to 90%.
- Fall Time (t_f): Time taken to fall from 90% to 10%
- Edge Rate $(t_{rf}): (t_r + t_f)/2.$
- High-to-Low propagation delay (t_{pHL}): Time taken to fall from V_{OH} to 50%.
- Low-to-High propagation delay (t_{pLH}): Time taken to rise from 50% to $V_{\rm OL}.$
- Propagation Delay (t_p) : $(t_{pHL} + t_{pLH})/2$.
- Contamination Delay (t_{cd}): Minimum time from the input crossing 50% to the output crossing 50%