
University of Diyala

College of Engineering

Department of Computer Engineering

1



 Course Number: U 102 

 Course Name: Computer Science 

 Credit Hours: (2-1-0-2) 

 Prerequisites: None 

 Course Contents: Computer Architecture, Computer Assembly
and parts Characteristics, History of Computer, Generations of
computer, Types of computer, Personal computer, major parts of
the Computer (Hard Ware); Input Devices, Processor, Output
Devices, Storage Devices, Internal Components, Software; Types
of software, System software, Application software, Computer
Languages and Scripting, Booting, Computer maintenance and
troubleshooting, BIOS Setting, Open Source Software and Linux
OS, Navigating Linux GUI, The Internet.

2



7. SOFTWARE 

 We have studied about the physical components or the hardware of the
computer system. But the hardware is of no use on its own. Hardware
needs to be operated by a set of instructions. These sets of instructions
are referred to as software. It is that component of a computer system,
which we cannot touch or view physically. It comprises the instructions
and data to be processed using the computer hardware. The computer
software and hardware complete any task together.

 The software comprises a set of instructions which on execution
deliver the desired outcome. In other words, each software is written
for some computational purpose. Some examples of software include
operating systems like Ubuntu or Windows 7/11, word processing tool
like LibreOffice or Microsoft Word, video player like VLC Player, photo
editors and LibreOffice draw. A document or image stored on the hard
disk or pen drive is referred to as a soft-copy. Once printed, the
document or an image is called a hard-copy.

3



7.1 Need of Software 

 The sole purpose of a software is to make the computer hardware
useful and operational. A software knows how to make different
hardware components of a computer work and communicate with each
other as well as with the end-user. We cannot instruct the hardware of a
computer directly. Software acts as an interface between human users
and the hardware. Depending on the mode of interaction with
hardware and functions to be performed, the software can be broadly
classified into three categories:

 (i) System software.

 (ii) Programming tools. 

 (iii) Application software.

4



7.2 System Software 

The software that provides the basic functionality to operate a
computer by interacting directly with its constituent hardware is
termed as system software. A system software knows how to
operate and use different hardware components of a computer. It
provides services directly to the end user, or to some other
software. Examples of system software include operating systems,
system utilities, device drivers, etc.

A. Operating System As the name implies, the operating system
is a system software that operates the computer. An operating
system is the most basic system software, without which other
software cannot work. The operating system manages other
application programs and provides access and security to the
users of the system. Some of the popular operating systems are
Windows, Linux, Macintosh, Ubuntu, Fedora, Android, iOS, etc.

5



B. System Utilities Software used for maintenance and configuration of the
computer system is called system utility. Some system utilities are shipped with
the operating system for example disk defragmentation tool, formatting utility,
system restore utility, etc. Another set of utilities are those which are not
shipped with the operating system but are required to improve the
performance of the system, for example, anti-virus software, disk cleaner tool,
disk compression software, etc.

C. Device Drivers As the name signifies, the purpose of a device driver is to
ensure proper functioning of a particular device. When it comes to the overall
working of a computer system, the operating system does the work. But
everyday new devices and components are being added to a computer system.
It is not possible for the operating system alone to operate all of the existing
and new devices, where each device has diverse characteristics. The
responsibility for overall control, operation and management of a particular
device at the hardware level is delegated to its device driver. The device driver
acts as an interface between the device and the operating system. It provides
required services by hiding the details of operations performed at the hardware
level of the device. Just like a language translator, a device driver acts as a
mediator between the operating system and the attached device. The
categorisation of software is shown in Figure.

6



7



7.3 Programming Tools 

 In order to get some work done by the computer, we need to give
instructions which are applied on the input data to get the desired
outcome. Computer languages are developed for writing these
instructions. It is important to understand here that computers and
humans understand completely different languages.

 While humans are able to write programs in high-level language,
computers understand machine language. There is a continuous need
for conversion from high level to machine level language, for which
translators are needed. Also, to write the instruction, code editors (e.g.,
Integrated Development and Learning Environment (IDLE) in Python)
are needed. We will briefly describe here the programming languages,
language translators and program development tools.

8



A. Classification of Programming Languages It is very difficult for a human
being to write instructions in the form of 1s and 0s. So different types of
computer programming languages are developed to simplify the coding. Two
major categories of computer programming languages are low-level languages
and high-level languages.

 Low-level languages are machine dependent languages and include machine
language and assembly language. Machine language uses 1’s and 0’s to write
instructions which are directly understood and executed by the computer. But
writing a code in machine language is difficult as one has to remember all operation
codes and machine addresses. Also finding errors in the code written in machine
language is difficult. To simplify the writing of code, assembly language was
developed that allowed usage of English-like words and symbols instead of 1s and 0s.
But one major drawback of writing a code in this language is that the code is
computer specific, i.e., the code written for one type of CPU cannot be used for
another type of CPU.

 High level languages are machine independent and are simpler to write code into.
Instructions are using English like sentences and each high level language follows a
set of rules, similar to natural languages. However, these languages are not directly
understood by the computer. Hence, translators are needed to translate high-level
language codes into machine language. Examples of high level language include C++,
Java, Python, etc.

9



B. Language Translators As the computer can understand only
machine language, a translator is needed to convert program
written in assembly or high level language to machine
language. The program code written in assembly or high-level
language is called source code. The source code is converted by
a translator into the machine understandable form called object
(machine) code as depicted in Figure. As we have different
types of computer languages, different translators are needed to
convert the source code to machine code. The three types of
translators used in computing systems are assembler, compiler
and interpreter. The translator used to convert the code written
in assembly language to machine language is called assembler.
Each assembler can understand a specific microprocessor
instruction set only and hence, the machine code is not
portable. We also need translators to convert codes written in
high level language (source code) to machine understandable
form (machine code) for execution by the computer. Compiler
converts the source code into machine code. If the code follows
all syntactic rules of the language, then it is executed by the
computer. Once translated, the compiler is not needed. An
interpreter translates one line at a time instead of the whole
program at one go. Interpreter takes one line, converts it into
executable code if the line is syntactically correct, and then it
repeats these steps for all lines in the source code. Hence,
interpreter is always needed whenever a source code is to be
executed.

10



C. Program Development Tools Whenever we decide to
write a program, we need a text editor. An editor is a
software that allows us to create a text file where we type
instructions and store the file as the source code. Then an
appropriate translator is used to get the object code for
execution. In order to simplify the program development,
there are software called Integrated Development
Environment (IDE) consisting of text editor, building tools
and debugger. A program can be typed, compiled and
debugged from the IDE directly. Besides Python IDLE,
Netbeans, Eclipse, Atom, Lazarus are few other examples
of IDEs. Debugger, as the name implies, is the software to
detect and correct errors in the source code.

11



7.4 Application Software 

The system software provides the core functionality of the computer system.
However, different users need the computer system for different purposes
depending upon their requirements. Hence, a new category of software is needed
to cater to different requirements of the endusers. This specific software that
works on top of the system software is termed as application software. There are
again two broad categories of application software — general purpose and
customised application software.
A. General Purpose Software The application software developed for generic

applications, to cater to a bigger audience in general are called general purpose
software. Such ready-made application software can be used by end users as
per their requirements. For example, spreadsheet tool Calc of LibreOffice can
be used by any computer user to do calculation or to create account sheet.
Adobe Photoshop, GIMP, Mozilla web browser, iTunes, etc., fall in the category
of general purpose software.

B. Customised Software These are custom or tailor-made application software,
that are developed to meet the requirements of a specific organisation or an
individual. They are better suited to the needs of an individual or an
organisation, considering that they are designed as per special requirements.
Some examples of user-defined software include websites, school management
software, accounting software, etc. It is similar to buying a piece of cloth and
getting a tailor-made garment with the fitting, colour, and fabric of our choice

12



7.5 Proprietary or Free and Open Source Software 

The developers of some application software provide their source code as
well as the software freely to the public, with an aim to develop and
improve further with each other’s help. Such software is known as Free
and Open Source Software (FOSS). For example, the source code of
operating system Ubuntu is freely accessible for anyone with the required
knowledge to improve or add new functionality. More examples of FOSS
include Python, Libreoffice, Openoffice, Mozilla Firefox, etc. Sometimes,
software are freely available for use but source code may not be available.
Such software are called freeware. Examples of freeware are Skype, Adobe
Reader, etc. When the software to be used has to be purchased from the
vendor who has the copyright of the software, then it is a proprietary
software. Examples of proprietary software include Microsoft Windows,
Tally, Quickheal, etc. A software can be freeware or open source or
proprietary software depending upon the terms and conditions of the
person or group who has developed and released that software.

13



8. Operating System 

 An operating system (OS) can be considered to be a resource manager which
manages all the resources of a computer, i.e., its hardware including CPU,
RAM, Disk, Network and other input-output devices. It also controls various
application software and device drivers, manages system security and handles
access by different users. It is the most important system software. Examples of
popular OS are Windows, Linux, Android, Macintosh and so on. The primary
objectives of an operating system are two-fold. The first is to provide services
for building and running application programs. When an application program
needs to be run, it is the operating system which loads that program into
memory and allocates it to the CPU for execution. When multiple application
programs need to be run, the operating system decides the order of the
execution. The second objective of an operating system is to provide an
interface to the user through which the user can interact with the computer. A
user interface is a software component which is a part of the operating system
and whose job is to take commands or inputs from a user for the operating
system to process.

14



8.1 OS User Interface 

There are different types of user interfaces each of which
provides a different functionality. Some commonly used
interfaces are shown in Figure.

A. Command-based Interface. Command-based interface
requires a user to enter the commands to perform different
tasks like creating, opening, editing or deleting a file, etc.
The user has to remember the names of all such programs
or specific commands which the operating system
supports. The primary input device used by the user for
command based interface is the keyboard. Command
based interface is often less interactive and usually allows a
user to run a single program at a time. Examples of
operating systems with command-based interface include
MS-DOS and Unix.

15



B. Graphical User Interface. Graphical User Interface (GUI) lets users
run programs or give instructions to the computer in the form of icons,
menus and other visual options. Icons usually represent files and
programs stored on the computer and windows represent running
programs that the user has launched through the operating system.
The input devices used to interact with the GUI commonly include the
mouse and the keyboard. Examples of operating systems with GUI
interfaces include Microsoft Windows, Ubuntu, Fedora and Macintosh,
among others.

C. Touch-based Interface. Today smartphones, tablets and PCs allow
users to interact with the system simply using the touch input. Using
the touchscreen, a user provides inputs to the operating system, which
are interpreted by the OS as commands like opening an app, closing an
app, dialing a number, scrolling across apps, etc. Examples of popular
operating systems with touchbased interfaces are Android and iOS.
Windows 8.1 and 10 also support touch-based interfaces on
touchscreen devices.

16



D. Voice-based Interface. Modern computers have been designed to
address the needs of all types of users including people with special
needs and people who want to interact with computers or smartphones
while doing some other task. For users who cannot use the input
devices like the mouse, keyboard, and touchscreens, modern operating
systems provide other means of human-computer interaction. Users
today can use voice-based commands to make a computer work in the
desired way. Some operating systems which provide voice-based
control to users include iOS (Siri), Android (Google Now or “OK
Google”), Microsoft Windows 10 (Cortana) and so on.

E. Gesture-based Interface. Some smartphones based on Android and
iOS as well as laptops let users interact with the devices using gestures
like waving, tilting, eye motion and shaking. This technology is
evolving faster and it has promising potential for application in
gaming, medicine and other areas.

17



8.2 Functions of Operating System 

Now let us explore the important services and tasks that an operating system provides for managing the
computer system.

A. Process Management While a computer system is operational, different tasks are running
simultaneously. A program is intended to carry out various tasks. A task in execution is known as
process. We can activate a system monitor program that provides information about the processes
being executed on a computer. In some systems it can be activated using Ctrl+Alt+Delete. It is the
responsibility of operating system to manage these processes and get multiple tasks completed in
minimum time. As CPU is the main resource of computer system, its allocation among processes is
the most important service of the operating system. Hence process management concerns the
management of multiple processes, allocation of required resources, and exchange of information
among processes.

B. Memory Management Primary or main memory of a computer system is usually limited. The main
task of memory management is to give (allocate) and take (free) memory from running processes.
Since there are multiple processes running at a time, there arises a need to dynamically (on-the-go)
allocate and free memory to the processes. Operating system should do it without affecting other
processes that are already residing in the memory and once the process is finished, it is again the
responsibility of the operating system to take the memory space back for reutilisation. Hence,
memory management concerns with management of main memory so that maximum memory is
occupied or utilised by large number of processes while keeping track of each and every location
within the memory as free or occupied.

18



C. File Management Data and programs are stored as files in the secondary storage of a computer system.
File management involves the creation, updation, deletion and protection of these files in the
secondary memory. Protection is a crucial function of an operating system, as multiple users can
access and use a computer system. There must be a mechanism in place that will stop users from
accessing files that belong to some other user and have not been shared with them. File management
system manages secondary memory, while memory management system handles the main memory
of a computer system.

D. Device Management A computer system has many I/O devices and hardware connected to it.
Operating system manages these heterogeneous devices that are interdependent. The operating
system interacts with the device driver and the related software for a particular device. The operating
system must also provide the options for configuring a particular device, so that it may be used by an
end user or some other device. Just like files, devices also need security measures and their access to
different devices must be restricted by the operating system to the authorised users, software and
other hardware only.

19



Exercises
1. Name the software required to make a computer functional. Write down its two primary services.

2. How does the computer understand a program written in high level language?

3. Why is the execution time of the machine code less than that of source code?

4. What is the need of RAM? How does it differ from ROM?

5. What is the need for secondary memory?

6. How do different components of the computer communicate with each other?

7. Draw the block diagram of a computer system. Briefly write about the functionality of each
component.

8. What is the primary role of system bus? Why is data bus is bidirectional while address bus is
unidirectional?

9. Differentiate between proprietary software and freeware software. Name two software for each type.

10. Write the main difference between microcontroller NOTES and microprocessor. Why do smart
home appliances have a microcontroller instead of microprocessor embedded in them?

11. Mention the different types of data that you deal with while browsing the Internet.

12. Categorise the following data as structured, semi structured and unstructured:

• Newspaper

• Cricket Match Score

• HTML Page

• Patient records in a hospital

20



14. Name the input or output device used to do the following:

a) To output audio 

b) To enter textual data 

c) To make hard copy of a text file 

d) To display the data or information 

e) To enter audio-based command 

f) To build 3D models 

g) To assist a visually-impaired individual in entering data 

15. Identify the category (system, application, programming tool) of the following software: 

a) Compiler 

b) Assembler 

c) Ubuntu

d) Text editor

21


